scholarly journals Effect of a low water salinity on oocyte maturation, oocyte hydration, ovulation and egg quality in rainbow trout.

2021 ◽  
Author(s):  
Emilien Segret ◽  
Emilie Cardona ◽  
Sandrine Skiba-Cassy ◽  
Frederic Cachelou ◽  
Julien Bobe

Water salinity is an important environmental factor known to have detrimental effects on salmonid reproduction, mostly when migrating female broodfish are held in sea water. In contrast, data obtained in freshwater are scarce and the impact of low water salinity during reproduction in freshwater is currently unknown. For this reason, and because ion and water fluxes are critical for the final steps of the female gamete formation, including oocyte hydration and ovulation, the aim of the present study was to investigate the impact of low salinity water on final oocyte maturation, ovulation and, ultimately, on egg quality, using rainbow trout as a physiological model and relevant aquaculture species. Fish from the same commercial strain were raised throughout their lifecycle either in a site characterized by low concentrations of Na+, K+, and Cl- ions in the water or in a closely located control site exhibiting standard salinity levels. Egg quality and duration of final oocyte maturation were investigated using innovative phenotyping tools such as automatic assessment of egg viability using the VisEgg system and non-invasive echograph-based monitoring of final oocyte maturation duration, respectively. Oocyte hydration during final oocyte maturation and after ovulation was also investigated. Finally, molecular phenotyping was performed using real-time PCR-based monitoring of several key players of final oocyte maturation and ovulation associated with ion and water transport, inflammation, proteolytic activity, and coagulation. Oocyte hydration and gene expression data were analyzed in the light of the duration of final oocyte maturation. Here we show that low water salinity negatively influences final oocyte maturation, ovulation and, ultimately, egg quality. Low water salinity triggers delayed ovulation and lower oocyte viability. When investigating the impact of low water salinity on final oocyte maturation duration, individuals presenting the most severe phenotypes exhibited impaired oocyte hydration and abnormally reduced gene expression levels of several key players of the ovulatory process. While the under expression of water (e.g., aquaporins) and ion (e.g., solute carriers) transporters is consistent with impaired oocyte hydration, our observations also indicate that the entire ovulatory gene expression program is disrupted. Our results raise the question of the mechanisms underlying the negative influence of low salinity water on the dynamics of the preovulatory phase, on the control of the oocyte homeostasis, including hydration, and on the overall success of the maturation-ovulation process.

2018 ◽  
Vol 58 (1) ◽  
pp. 44 ◽  
Author(s):  
Emad A. Al-Khdheeawi ◽  
Stephanie Vialle ◽  
Ahmed Barifcani ◽  
Mohammad Sarmadivaleh ◽  
Stefan Iglauer

Water alternating gas (WAG) injection significantly improves enhanced oil recovery efficiency by improving the sweep efficiency. However, the impact of injected water salinity during WAG injection on CO2 storage efficiency has not been previously demonstrated. Thus, a 3D reservoir model has been developed for simulating CO2 injection and storage processes in homogeneous reservoirs with different water injection scenarios (i.e. low salinity water injection (1000 ppm NaCl), high salinity water injection (250 000 ppm NaCl) and no water injection), and the associated reservoir-scale CO2 plume dynamics and CO2 dissolution have been predicted. Furthermore, in this work, we have investigated the efficiency of dissolution trapping with and without WAG injection. For all water injection scenarios, 5000 kton of CO2 were injected during a 10-year CO2 injection period. For high and low salinity water injection scenarios, 5 cycles of CO2 injection (each cycle is one year) at a rate of 1000 kton/year were carried out, and each CO2 cycle was followed by a one year water injection at a rate of 0.015 pore volume per year. This injection period was followed by a 500-year post injection (storage) period. Our results clearly indicate that injected water salinity has a significant impact on the quantity of dissolved CO2 and on the CO2 plume dynamics. The low salinity water injection resulted in the maximum CO2 dissolution and minimum vertical migration of CO2. Also, our results show that WAG injection enhances dissolution trapping and reduces CO2 leakage risk for both injected water salinities. Thus, we conclude that the low salinity water injection improves CO2 storage efficiency.


2018 ◽  
Vol 58 (1) ◽  
pp. 51 ◽  
Author(s):  
Tammy Amirian ◽  
Manouchehr Haghighi

Low salinity water (LSW) injection as an enhanced oil recovery method has attracted much attention in the past two decades. Previously, it was found that the presence of clay such as kaolinite and water composition like the nature of cations affect the enhancement of oil recovery under LSW injection. In this study, a pore-scale visualisation approach was developed using a 2D glass micromodel to investigate the impact of clay type and water composition on LSW injection. The glass micromodels were coated by kaolinite and illite. A meniscus moving mechanism was observed and the oil–water interface moved through narrow throats to large bodies, displacing the wetting phase (oil phase). In the presence of kaolinite, the effect of LSW injection was reflected in the change to the wettability with a transition towards water-wetness in the large sections of the pore walls. The advance of the stable water front left behind an oil film on the oil-wet portions of pore walls; however, in water-wet surfaces, the interface moved towards the surface and replaced the oil film. As a result of wettability alteration towards a water-wet state, the capillary forces were not dominant throughout the system and the water–oil menisci displaced oil in large portions of very narrow channels. This LSW effect was not observed in the presence of illite. With regard to the water composition effect, systems containing divalent cations like Ca2+ showed the same extent of recovery as those containing only monovalent ions. The observation indicates a significant role of cation exchange in wettability alteration. Fines migration was insignificant in the observations.


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2874-2888 ◽  
Author(s):  
Hasan Al–Ibadi ◽  
Karl D. Stephen ◽  
Eric J. Mackay

Summary Low–salinity waterflooding (LSWF) is an emergent technology developed to increase oil recovery. Laboratory–scale testing of this process is common, but modeling at the production scale is less well–reported. Various descriptions of the functional relationship between salinity and relative permeability have been presented in the literature, with respect to the differences in the effective salinity range over which the mechanisms occur. In this paper, we focus on these properties and their impact on fractional flow of LSWF at the reservoir scale. We present numerical observations that characterize flow behavior accounting for dispersion. We analyzed linear and nonlinear functions relating salinity to relative permeability and various effective salinity ranges using a numerical simulator. We analyzed the effect of numerical and physical dispersion of salinity on the velocity of the waterflood fronts as an expansion of fractional–flow theory, which normally assumes shock–like behavior of water and concentration fronts. We observed that dispersion of the salinity profile affects the fractional–flow behavior depending on the effective salinity range. The simulator solution is equal to analytical predictions from fractional–flow analysis when the midpoint of the effective salinity range lies between the formation and injected salinities. However, retardation behavior similar to the effect of adsorption occurs when these midpoint concentrations are not coincidental. This alters the velocities of high– and low–salinity water fronts. We derived an extended form of the fractional–flow analysis to include the impact of salinity dispersion. A new factor quantifies a physical or numerical retardation that occurs. We can now modify the effects that dispersion has on the breakthrough times of high– and low–salinity water fronts during LSWF. This improves predictive ability and also reduces the requirement for full simulation.


2021 ◽  
Author(s):  
Navpreet Singh ◽  
Hemanta Kumar Sarma

Abstract Low salinity waterflooding has been an area of great interest for researchers for almost over three decades for its perceived "simplicity," cost-effectiveness, and the potential benefits it offers over the other enhanced oil recovery (EOR) techniques. There have been numerous laboratory studies to study the effect of injection water salinity on oil recovery, but there are only a few cases reported worldwide where low salinity water flooding (LSW) has been implemented on a field scale. In this paper, we have summarized the results of our analyses for some of those successful field cases for both sandstone and carbonate reservoirs. Most field cases of LSW worldwide are in sandstone reservoirs. Although there have been a lot of experimental studies on the effect of water salinity on recovery in carbonate reservoirs, only a few cases of field-scale implementation have been reported for the LSW in carbonate reservoirs. The incremental improvement expected from the LSW depends on various factors like the brine composition (injection and formation water), oil composition, pressure, temperature, and rock mineralogy. Therefore, all these factors should be considered, together with some specially designed fit-for-purpose experimental studies need to be performed before implementing the LSW on a field scale. The evidence of the positive effect of LSW at the field scale has mostly been observed from near well-bore well tests and inter-well tests. However, there are a few cases such Powder River Basin in the USA and Bastrykskoye field in Russia, where the operators had unintentionally injected less saline water in the past and were pleasantly surprised when the analyses of the historical data seemed to attribute the enhanced oil recovery due to the lower salinity of the injected water. We have critically analyzed all the major field cases of LSW. Our paper highlights some of the key factors that worked well in the field, which showed a positive impact of LSW and a comparative assessment of the incremental recovery realized from the reservoir visa-a-vis the expectations generated from the laboratory-based experimental studies. It is envisaged that such a comparison could be more meaningful and reliable. Also, it identifies the likely uncertainties (and their sources) associated during the field implementation of LSW.


2019 ◽  
Vol 130 (3) ◽  
pp. 731-749 ◽  
Author(s):  
Takashi Akai ◽  
Amer M. Alhammadi ◽  
Martin J. Blunt ◽  
Branko Bijeljic

Abstract We demonstrate how to use numerical simulation models directly on micro-CT images to understand the impact of several enhanced oil recovery (EOR) methods on microscopic displacement efficiency. To describe the physics with high-fidelity, we calibrate the model to match a water-flooding experiment conducted on the same rock sample (Akai et al. in Transp Porous Media 127(2):393–414, 2019. 10.1007/s11242-018-1198-8). First we show comparisons of water-flooding processes between the experiment and simulation, focusing on the characteristics of remaining oil after water-flooding in a mixed-wet state. In both the experiment and simulation, oil is mainly present as thin oil layers confined to pore walls. Then, taking this calibrated simulation model as a base case, we examine the application of three EOR processes: low salinity water-flooding, surfactant flooding and polymer flooding. In low salinity water-flooding, the increase in oil recovery was caused by displacement of oil from the centers of pores without leaving oil layers behind. Surfactant flooding gave the best improvement in the recovery factor of 16% by reducing the amount of oil trapped by capillary forces. Polymer flooding indicated improvement in microscopic sweep efficiency at a higher capillary number, while it did not show an improvement at a low capillary number. Overall, this work quantifies the impact of different EOR processes on local displacement efficiency and establishes a workflow based on combining experiment and modeling to design optimal recovery processes.


Sign in / Sign up

Export Citation Format

Share Document