scholarly journals In vivo modelling of patient genetic heterogeneity identifies concurrent Wnt and PI3K activity as a potent driver of invasive cholangiocarcinoma growth.

2021 ◽  
Author(s):  
Nicholas Younger ◽  
Mollie Wilson ◽  
Edward Jarman ◽  
Alison Meynert ◽  
Graeme Grimes ◽  
...  

Intrahepatic cholangiocarcinoma (ICC) is an aggressive and lethal malignancy of the bile ducts within the liver characterised by high levels of genetic heterogeneity. In the context of such genetic variability, determining which oncogenic mutations drive ICC growth has been difficult and developing modes of patient stratification and targeted therapies remains challenging. As a result, survival rates following a diagnosis with ICC have remained static since the late 1970s, whilst incidence of ICC has increased. Here, we performed the first functional in vivo study into the role that genetic heterogeneity plays in driving ICC via modelling of interactions between rare mutations with more common driver genes. By leveraging human ICC sequencing data to stratify and then model genetic heterogeneity in the mouse, we uncovered numerous novel tumour suppressors which, when lost, cooperate with the RAS oncoprotein to drive ICC growth. In this study, we specifically focus on a set of driver mutations that interact with KRAS to initiate aggressive, sarcomatoid-type ICC. We show that tumour growth of this cancer relies on both Wnt and PI3K signalling to drive proliferation and suppress apoptosis. Finally, we demonstrate that pharmacological co-inhibition of Wnt and PI3K in vivo substantially impedes the growth of ICC, regardless of mutational profile. As such, Wnt and PI3K activity should be considered as a signature by which patients can be stratified for treatment and inhibitors of these pathways should be levied as a treatment for patients diagnosed with ICC.

2021 ◽  
Author(s):  
Andrea Sottoriva ◽  
Trevor A Graham ◽  
Timon Heide ◽  
Jacob Househam ◽  
George D Cresswell ◽  
...  

Cancer genomic medicine relies on targeting driver genes. However, current catalogues of cancer drivers are mostly based on indirect measurements of mutation frequencies, positions or types, rather than their effect on clonal expansions in vivo. Moreover, nongenetic drivers are largely unknown, as are the epigenetic and transcriptomic effects of genetic drivers. Here we perform spatial computational inference on multiomic data with matched whole-genome sequencing, ATAC-seq and RNA-seq. Using 436 samples, we directly quantify the contribution, or lack thereof, of putative driver genes to subclonal expansions in vivo in 30 colorectal carcinomas (4-33 samples per patient, median=15). Although subclonal neutral evolution was widespread (13/26 cases with sufficient data), there were cases with clear evidence of subclonal selection (6/26) in which we measured epigenetic and transcriptomic differences between subclones in vivo. In 7/26 cases we could not distinguish between neutral or selective evolution with the available data. We identified expanding subclones that were not driven by known genetic alterations, and propose candidate epigenetic drivers. We identified the distinguishing patterns of genomic heterogeneity produced in fast, exponentially growing tumours (7/26) versus neoplasms growing only at the periphery (19/26), as well as identifying clonally intermixed (16/28 cases with sufficient data) versus segregated malignancies (10/28). Our model-based approach measures genetic and non-genetic subclonal selection, or lack thereof, in space and time and allows in vivo comparisons of the emergent phenotypic properties of subclones within human tumours.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
S Nahuel Villegas ◽  
Michaela Rothová ◽  
Martin E Barrios-Llerena ◽  
Maria Pulina ◽  
Anna-Katerina Hadjantonakis ◽  
...  

During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentiation to uncover a new mechanism for PI3K signalling that is required for endoderm specification. We found that PI3K signalling promotes the transition from naïve endoderm precursors into committed anterior endoderm. PI3K promoted commitment via an atypical activity that delimited epithelial-to-mesenchymal transition (EMT). Akt1 transduced this activity via modifications to the extracellular matrix (ECM) and appropriate ECM could itself induce anterior endodermal identity in the absence of PI3K signalling. PI3K/Akt1-modified ECM contained low levels of Fibronectin (Fn1) and we found that Fn1 dose was key to specifying anterior endodermal identity in vivo and in vitro. Thus, localized PI3K activity affects ECM composition and ECM in turn patterns the endoderm.


2018 ◽  
Author(s):  
Julian Musa ◽  
Florencia Cidre-Aranaz ◽  
Marie-Ming Aynaud ◽  
Martin F. Orth ◽  
Olivier Mirabeau ◽  
...  

INTRODUCTORY PARAGRAPHDeciphering principles of inter-individual tumor heterogeneity is essential for refinement of personalized anti-cancer therapy. Unlike cancers of adulthood, pediatric malignancies including Ewing sarcoma (EwS) feature a striking paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome.Here we demonstrate in the EwS model how cooperation of a dominant oncogene and regulatory variants determine tumor growth, patient survival and drug response.We show that binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancer-like DNA element controls expression of the transcription factor MYBL2, whose high expression promotes poor patient outcome via activation of pro-proliferative signatures. Analysis of paired germline and tumor whole-genome sequencing data revealed that regulatory variability at this locus is inherited via the germline. CRISPR-mediated interference with this regulatory element almost abolished MYBL2 transcription, and MYBL2 knockdown decreased cell proliferation, cell survival and tumorigenicity of EwS cells. Combined RNA- and ChIP-seq analyses as well as functional experiments and clinical data identified CCNF, BIRC5 and AURKB as direct MYBL2 targets and critical mediators of its phenotype. In drug-response experiments, high MYBL2 levels sensitized EwS cells for inhibition of its activating cyclin dependent kinase CDK2 in vitro and in vivo, suggesting MYBL2 as a predictive biomarker for targeted anti-CDK2-therapy.Collectively, our findings establish cooperation of somatic mutations and regulatory germline variants as a major determinant of tumor progression and indicate the importance of integrating the regulatory genome in the process of developing new diagnostic and/or therapeutic strategies to fully harness the potential of precision medicine.


2015 ◽  
Author(s):  
Heiko Horn ◽  
Michael S. Lawrence ◽  
Jessica Xin Hu ◽  
Elizabeth Worstell ◽  
Nina Ilic ◽  
...  

Heterogeneity across cancer makes it difficult to find driver genes with intermediate (2-20%) and low frequency (<2%) mutations, and we are potentially missing entire classes of networks (or pathways) of biological and therapeutic value. Here, we quantify the extent to which cancer genes across 21 tumor types have an increased burden of mutations in their immediate gene network derived from functional genomics data. We formalize a classifier that accurately calculates the significance level of a gene’s network mutation burden (NMB) and show it can accurately predict known cancer genes and recently proposed driver genes in the majority of tested tumours. Our approach predicts 62 putative cancer genes, including 35 with clear connection to cancer and 27 genes, which point to new cancer biology. NMB identifies proportionally more (4x) low-frequency mutated genes as putative cancer genes than gene-based tests, and provides molecular clues in patients without established driver mutations. Our quantitative and comparative analysis of pan-cancer networks across 21 tumour types gives new insights into the biological and genetic architecture of cancers and enables additional discovery from existing cancer genomes. The framework we present here should become increasingly useful with more sequencing data in the future.


2019 ◽  
Author(s):  
Sandeep Chakraborty

‘Prime-editing’ proposes to replace traditional programmable nucleases (CRISPR-Cas9) using a catalytically impaired Cas9 (dCas9) connected to a engineered reverse transcriptase, and a guide RNA encoding both the target site and the desired change. With just a ‘nick’ on one strand, it is hypothe- sized, the negative, uncontrollable effects arising from double-strand DNA breaks (DSBs) - translocations, complex proteins, integrations and p53 activation - will be eliminated. However, sequencing data pro- vided (Accid:PRJNA565979) reveal plasmid integration, indicating that DSBs occur. Also, looking at only 16 off-targets is inadequate to assert that Prime-editing is more precise. Integration of plasmid occurs in all three versions (PE1/2/3). Interestingly, dCas9 which is known to be toxic in E. coli and yeast, is shown to have residual endonuclease activity. This also affects studies that use dCas9, like base- editors and de/methylations systems. Previous work using hRad51–Cas9 nickases also show significant integration in on-targets, as well as off-target integration [1]. Thus, we show that cellular response to nicking involves DSBs, and subsequent plasmid/Cas9 integration. This is an unacceptable outcome for any in vivo application in human therapy.


2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhicheng Zheng ◽  
Peiyu Liang ◽  
Baohua Hou ◽  
Xin Lu ◽  
Qianwen Ma ◽  
...  

Abstract Background Accumulating evidence suggests that disease-associated microglia (DAM), a recently discovered subset of microglia, plays a protective role in neurological diseases. Targeting DAM phenotypic transformation may provide new therapeutic options. However, the relationship between DAM and epilepsy remains unknown. Methods Analysis of public RNA-sequencing data revealed predisposing factors (such as dipeptidyl peptidase IV; DPP4) for epilepsy related to DAM conversion. Anti-epileptic effect was assessed by electroencephalogram recordings and immunohistochemistry in a kainic acid (KA)-induced mouse model of epilepsy. The phenotype, morphology and function of microglia were assessed by qPCR, western blotting and microscopic imaging. Results Our results demonstrated that DPP4 participated in DAM conversion and epilepsy. The treatment of sitagliptin (a DPP4 inhibitor) attenuated KA-induced epilepsy and promoted the expression of DAM markers (Itgax and Axl) in both mouse epilepsy model in vivo and microglial inflammatory model in vitro. With sitagliptin treatment, microglial cells did not display an inflammatory activation state (enlarged cell bodies). Furthermore, these microglia exhibited complicated intersections, longer processes and wider coverage of parenchyma. In addition, sitagliptin reduced the activation of NF-κB signaling pathway and inhibited the expression of iNOS, IL-1β, IL-6 and the proinflammatory DAM subset gene CD44. Conclusion The present results highlight that the DPP4 inhibitor sitagliptin can attenuate epilepsy and promote DAM phenotypic transformation. These DAM exhibit unique morphological features, greater migration ability and better surveillance capability. The possible underlying mechanism is that sitagliptin can reduce the activation of NF-κB signaling pathway and suppress the inflammatory response mediated by microglia. Thus, we propose DPP4 may act as an attractive direction for DAM research and a potential therapeutic target for epilepsy.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1742
Author(s):  
Melysa Fitriana ◽  
Wei-Lun Hwang ◽  
Pak-Yue Chan ◽  
Tai-Yuan Hsueh ◽  
Tsai-Tsen Liao

Head and neck squamous cell carcinomas (HNSCCs) are epithelial malignancies with 5-year overall survival rates of approximately 40–50%. Emerging evidence indicates that a small population of cells in HNSCC patients, named cancer stem cells (CSCs), play vital roles in the processes of tumor initiation, progression, metastasis, immune evasion, chemo-/radioresistance, and recurrence. The acquisition of stem-like properties of cancer cells further provides cellular plasticity for stress adaptation and contributes to therapeutic resistance, resulting in a worse clinical outcome. Thus, targeting cancer stemness is fundamental for cancer treatment. MicroRNAs (miRNAs) are known to regulate stem cell features in the development and tissue regeneration through a miRNA–target interactive network. In HNSCCs, miRNAs act as tumor suppressors and/or oncogenes to modulate cancer stemness and therapeutic efficacy by regulating the CSC-specific tumor microenvironment (TME) and signaling pathways, such as epithelial-to-mesenchymal transition (EMT), Wnt/β-catenin signaling, and epidermal growth factor receptor (EGFR) or insulin-like growth factor 1 receptor (IGF1R) signaling pathways. Owing to a deeper understanding of disease-relevant miRNAs and advances in in vivo delivery systems, the administration of miRNA-based therapeutics is feasible and safe in humans, with encouraging efficacy results in early-phase clinical trials. In this review, we summarize the present findings to better understand the mechanical actions of miRNAs in maintaining CSCs and acquiring the stem-like features of cancer cells during HNSCC pathogenesis.


2021 ◽  
pp. 1-10
Author(s):  
Yang Ma ◽  
Jingxia Zhao ◽  
Yun Du ◽  
Rui Wang ◽  
Xiaokun Ji ◽  
...  

<b><i>Objective:</i></b> The aim of the study was to investigate the mutation status of multiple driver genes by RT-qPCR and their significance in advanced lung adenocarcinoma using cytological specimens. <b><i>Materials and Methods:</i></b> 155 cytological specimens that had been diagnosed with lung adenocarcinoma in the Fourth Hospital of Hebei Medical University were selected from April to November 2019. The cytological specimens included serous cavity effusion and fine-needle aspiration biopsies. Among cytological specimens, 108 cases were processed by using the cell block method (CBM), and 47 cases were processed by the disposable membrane cell collector method (MCM) before DNA/RNA extraction. Ten drive genes of EGFR, ALK, ROS1, BRAF, KRAS, NRAS, HER2, RET, PIK3CA, and MET were combined detected at one step by the amplification refractory mutation system and ABI 7500 RT-qPCR. <b><i>Results:</i></b> The purity of RNA (<i>p</i> = 0.005) and DNA (<i>p</i> = 0.001) extracted by using the MCM was both significantly higher than that extracted by using the CBM. Forty-seven cases of fresh cell specimens processed by the MCM all succeeded in multigene detections, while of 108 specimens processed by the CBM, 6 cases failed in multigene detections. Among 149 specimens, single-gene mutation rates of EGFR, ALK, ROS1, RET, HER2, MET, KRAS, NRAS, BRAF, and PIK3CA mutations were 57.71%, 6.04%, 3.36%, 2.68%, 2.01%, 2.01%, 1.34%, 0.67%, 0% and 0% respectively, and 6 cases including 2 coexistence mutations. We found that mutation status was correlated with gender (<i>p</i> = 0.047), but not correlated with age (<i>p</i> = 0.141) and smoking status (<i>p</i> = 0.083). We found that the EGFR mutation status was correlated with gender (<i>p</i> = 0.003), age (<i>p</i> = 0.015) and smoking habits (<i>p</i> = 0.007), and ALK mutation status was correlated with age (<i>p</i> = 0.002). <b><i>Conclusion:</i></b> Compared with the CBM, the MCM can improve the efficiency of DNA/RNA extraction and PCR amplification by removing impurities and enriching tumor cells. And we speculate that the successful detection rate of fresh cytological specimens was higher than that of paraffin-embedded specimens. EGFR, ALK, and ROS1 mutations were the main driver mutations in patients with advanced lung adenocarcinoma. We speculate that EGFR and ALK are more prone to concomitant mutations, respectively. Targeted therapies for patients with coexisting mutations need further study.


Sign in / Sign up

Export Citation Format

Share Document