scholarly journals Human Papillomavirus Type 16 E6 induces cell competition

2021 ◽  
Author(s):  
Nicole Brimer ◽  
Scott Vande Pol

High risk human papillomavirus (HPV) infections induce squamous epithelial tumors in which the virus replicates.  Initially, the virus-infected epithelial cells are untransformed, but expand in both number and area at the expense of normal squamous epithelial cells.  How this occurs is unknown, but is presumed to be due to viral oncogene expression.  We have developed an  in vitro  assay in which colonies of post-confluent HPV16 expressing cells outcompete confluent surrounding normal keratinocytes for surface area.   The enhanced cell competition induced by the complete HPV16 genome is conferred by E6 expression alone, and not by individual expression of E5 or E7.   In traditional oncogene assays, E7 is a more potent oncogene than E6, but such assays do not include interaction with normal surrounding cells.  These new results separate classic oncogenicity that is primarily conferred by E7, from cell competition that we show is primarily conferred by E6, and provides a new biological role for E6 oncoproteins from high risk human papillomaviruses.   Importance High risk papillomavirus infections induce epithelial tumors, some of which evolve into malignancies.   The development and maintenance of cancer is due to the virally encoded E6 and E7 oncoproteins.  How a virally infected keratinocyte out-competes normal uninfected keratinocytes has been unknown.  The present work shows that the enhanced competition of HPV16-infected cells is primarily due to the expression of the E6 oncoprotein and not the E7 or E5 oncoproteins.   This work shows the importance of measuring oncoprotein traits in the context of cell competition with uninfected cells, and shows the potential of papillomavirus oncoproteins to be novel genetic probes for the analysis of cell competition

1999 ◽  
Vol 19 (1) ◽  
pp. 733-744 ◽  
Author(s):  
Qingshen Gao ◽  
Seetha Srinivasan ◽  
Sarah N. Boyer ◽  
David E. Wazer ◽  
Vimla Band

ABSTRACT The high-risk human papillomaviruses (HPVs) are associated with carcinomas of the cervix and other genital tumors. Previous studies have identified two viral oncoproteins, E6 and E7, which are expressed in the majority of HPV-associated carcinomas. The ability of high-risk HPV E6 protein to immortalize human mammary epithelial cells (MECs) has provided a single-gene model to study the mechanisms of E6-induced oncogenic transformation. In this system, the E6 protein targets the p53 tumor suppressor protein for degradation, and mutational analyses have shown that E6-induced degradation of p53 protein is required for MEC immortalization. However, the inability of most dominant-negative p53 mutants to induce efficient immortalization of MECs suggests the existence of additional targets of the HPV E6 oncoprotein. Using the yeast two-hybrid system, we have isolated a novel E6-binding protein. This polypeptide, designated E6TP1 (E6-targeted protein 1), exhibits high homology to GTPase-activating proteins for Rap, including SPA-1, tuberin, and Rap1GAP. The mRNA for E6TP1 is widely expressed in tissues and in vitro-cultured cell lines. The gene for E6TP1 localizes to chromosome 14q23.2-14q24.3 within a locus that has been shown to undergo loss of heterozygosity in malignant meningiomas. Importantly, E6TP1 is targeted for degradation by the high-risk but not the low-risk HPV E6 proteins both in vitro and in vivo. Furthermore, the immortalization-competent but not the immortalization-incompetent HPV16 E6 mutants target the E6TP1 protein for degradation. Our results identify a novel target for the E6 oncoprotein and provide a potential link between HPV E6 oncogenesis and alteration of a small G protein signaling pathway.


2009 ◽  
Vol 83 (6) ◽  
pp. 2756-2764 ◽  
Author(s):  
Susan A. Heilman ◽  
Joshua J. Nordberg ◽  
Yingwang Liu ◽  
Greenfield Sluder ◽  
Jason J. Chen

ABSTRACT High-risk types of human papillomavirus (HPV) are considered the major causative agents of cervical carcinoma. The transforming ability of HPV resides in the E6 and E7 oncogenes, yet the pathway to transformation is not well understood. Cells expressing the oncogene E7 from high-risk HPVs have a high incidence of polyploidy, which has been shown to occur as an early event in cervical carcinogenesis and predisposes the cells to aneuploidy. The mechanism through which E7 contributes to polyploidy is not known. It has been hypothesized that E7 induces polyploidy in response to mitotic stress by abrogating the mitotic spindle assembly checkpoint. It was also proposed that E7 may stimulate rereplication to induce polyploidy. We have tested these hypotheses by using human epithelial cells in which E7 expression induces a significant amount of polyploidy. We find that E7-expressing cells undergo normal mitoses with an intact spindle assembly checkpoint and that they are able to complete cytokinesis. Our results also exclude DNA rereplication as a major mechanism of polyploidization in E7-expressing cells upon microtubule disruption. Instead, we have shown that while normal cells arrest at the postmitotic checkpoint after adaptation to the spindle assembly checkpoint, E7-expressing cells replicate their DNA and propagate as polyploid cells. Thus, abrogation of the postmitotic checkpoint leads to polyploidy formation in E7-expressing human epithelial cells. Our results suggest that downregulation of pRb is important for E7 to induce polyploidy and abrogation of the postmitotic checkpoint.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Lucia Minoni ◽  
Maria Carmen Romero-Medina ◽  
Assunta Venuti ◽  
Cécilia Sirand ◽  
Alexis Robitaille ◽  
...  

ABSTRACT The beta human papillomaviruses (HPVs) are subdivided into 5 species (beta-1 to beta-5), and they were first identified in the skin. However, the beta-3 species appears to be more highly represented in the mucosal epithelia than in the skin. Functional studies have also highlighted that beta-3 HPV49 shares some functional similarities with mucosal high-risk (HR) HPV16. Here, we describe the characterization of the in vitro transforming properties of the entire beta-3 species, which includes three additional HPV types: HPV75, HPV76, and HPV115. HPV49, HPV75, and HPV76 E6 and E7 (E6/E7), but not HPV115 E6 and E7, efficiently inactivate the p53 and pRb pathways and immortalize or extend the life span of human foreskin keratinocytes (HFKs). As observed for HR HPV16, cell cycle deregulation mediated by beta-3 HPV E6/E7 expression leads to p16INK4a accumulation, whereas no p16INK4a was detected in beta-2 HPV38 E6/E7 HFKs. As shown for HPV49 E6, HPV75 and HPV76 E6s degrade p53 by an E6AP/proteasome-mediated mechanism. Comparative analysis of cellular gene expression patterns of HFKs containing E6 and E7 from HR HPV16, beta-3 HPV types, and beta-2 HPV38 further highlights the functional similarities of HR HPV16 and beta-3 HPV49, HPV75, and HPV76. The expression profiles of these four HPV HFKs show some similarities and diverge substantially from those of beta-3 HPV115 E6/E7 and beta-2 HPV38 E6/E7 HFKs. In summary, our data show that beta-3 HPV types share some mechanisms with HR HPV types and pave the way for additional studies aiming to evaluate their potential role in human pathologies. IMPORTANCE Human papillomaviruses are currently classified in different genera. Mucosal HPVs belonging to the alpha genus have been clearly associated with carcinogenesis of the mucosal epithelium at different sites. Beta HPV types have been classified as cutaneous. Although findings indicate that some beta HPVs from species 1 and 2 play a role, together with UV irradiation, in skin cancer, very little is known about the transforming properties of most of the beta HPVs. This report shows the transforming activity of E6 and E7 from beta-3 HPV types. Moreover, it highlights that beta-3 HPVs share some biological properties more extensively with mucosal high-risk HPV16 than with beta-2 HPV38. This report provides new paradigms for a better understanding of the biology of the different HPV types and their possible association with lesions at mucosal and/or cutaneous epithelia.


1993 ◽  
Vol 13 (2) ◽  
pp. 775-784 ◽  
Author(s):  
J M Huibregtse ◽  
M Scheffner ◽  
P M Howley

The E6 oncoproteins of the cancer-associated or high-risk human papillomaviruses (HPVs) target the cellular p53 protein. The association of E6 with p53 leads to the specific ubiquitination and degradation of p53 in vitro, suggesting a model by which E6 deregulates cell growth control by the elimination of the p53 tumor suppressor protein. Complex formation between E6 and p53 requires an additional cellular factor, designated E6-AP (E6-associated protein), which has a native and subunit molecular mass of approximately 100 kDa. Here we report the purification of E6-AP and the cloning of its corresponding cDNA, which contains a novel open reading frame encoding 865 amino acids. E6-AP, translated in vitro, has the following properties: (i) it associates with wild-type p53 in the presence of the HPV16 E6 protein and simultaneously stimulates the association of E6 with p53, (ii) it associates with the high-risk HPV16 and HPV18 E6 proteins in the absence of p53, and (iii) it induces the E6- and ubiquitin-dependent degradation of p53 in vitro.


1993 ◽  
Vol 13 (2) ◽  
pp. 775-784 ◽  
Author(s):  
J M Huibregtse ◽  
M Scheffner ◽  
P M Howley

The E6 oncoproteins of the cancer-associated or high-risk human papillomaviruses (HPVs) target the cellular p53 protein. The association of E6 with p53 leads to the specific ubiquitination and degradation of p53 in vitro, suggesting a model by which E6 deregulates cell growth control by the elimination of the p53 tumor suppressor protein. Complex formation between E6 and p53 requires an additional cellular factor, designated E6-AP (E6-associated protein), which has a native and subunit molecular mass of approximately 100 kDa. Here we report the purification of E6-AP and the cloning of its corresponding cDNA, which contains a novel open reading frame encoding 865 amino acids. E6-AP, translated in vitro, has the following properties: (i) it associates with wild-type p53 in the presence of the HPV16 E6 protein and simultaneously stimulates the association of E6 with p53, (ii) it associates with the high-risk HPV16 and HPV18 E6 proteins in the absence of p53, and (iii) it induces the E6- and ubiquitin-dependent degradation of p53 in vitro.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1000 ◽  
Author(s):  
Noam Auslander ◽  
Yuri I. Wolf ◽  
Svetlana A. Shabalina ◽  
Eugene V. Koonin

The differences between high risk and low risk human papillomaviruses (HR-HPV and LR-HPV, respectively) that contribute to the tumorigenic potential of HR-HPV are not well understood but can be expected to involve the HPV oncoproteins, E6 and E7. We combine genome comparison and machine learning techniques to identify a previously unnoticed insert near the 3’-end of the E6 oncoprotein gene that is unique to HR-HPV. Analysis of the insert sequence suggests that it exerts a dual effect, by creating a PDZ domain-binding motif at the C-terminus of E6 as well as eliminating the overlap between the E6 and E7 coding regions in HR-HPV. We show that as a result, the insert might enable coupled termination-reinitiation of the E6 and E7 genes, supported by motifs complementary to the human 18S rRNA. We hypothesize that the added functionality of E6 and positive regulation of E7 expression jointly account for the tumorigenic potential of HR-HPV.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1000 ◽  
Author(s):  
Noam Auslander ◽  
Yuri I. Wolf ◽  
Svetlana A. Shabalina ◽  
Eugene V. Koonin

The differences between high risk and low risk human papillomaviruses (HR-HPV and LR-HPV, respectively) that contribute to the tumorigenic potential of HR-HPV are not well understood but can be expected to involve the HPV oncoproteins, E6 and E7. We combine genome comparison and machine learning techniques to identify a previously unnoticed insert near the 3’-end of the E6 oncoprotein gene that is unique to HR-HPV. Analysis of the insert sequence suggests that it exerts a dual effect, by creating a PDZ domain-binding motif at the C-terminus of E6, as well as eliminating the overlap between the E6 and E7 coding regions in HR-HPV. We show that, as a result, the insert might enable coupled termination-reinitiation of the E6 and E7 genes, supported by motifs complementary to the human 18S rRNA. We hypothesize that the added functionality of E6 and positive regulation of E7 expression jointly account for the tumorigenic potential of HR-HPV.


2002 ◽  
Vol 76 (12) ◽  
pp. 5993-6003 ◽  
Author(s):  
Sarah A. Cumming ◽  
Claire E. Repellin ◽  
Maria McPhillips ◽  
Jonathan C. Radford ◽  
J. Barklie Clements ◽  
...  

ABSTRACT The papillomavirus life cycle is tightly linked to epithelial cell differentiation. Production of virus capsid proteins is restricted to the most terminally differentiated keratinocytes in the upper layers of the epithelium. However, mRNAs encoding the capsid proteins can be detected in less-differentiated cells, suggesting that late gene expression is controlled posttranscriptionally. Short sequence elements (less than 80 nucleotides in length) that inhibit gene expression in undifferentiated epithelial cells have been identified in the late 3′ untranslated regions (UTRs) of several papillomaviruses, including the high-risk mucosal type human papillomavirus type 16 (HPV-16). Here we show that closely related high-risk mucosal type HPV-31 also contains elements that can act to repress gene expression in undifferentiated epithelial cells. However, the HPV-31 negative regulatory element is surprisingly complex, comprising a major inhibitory element of approximately 130 nucleotides upstream of the late polyadenylation site and a minor element of approximately 110 nucleotides mapping downstream. The first 60 nucleotides of the major element have 68% identity to the negative regulatory element of HPV-16, and these elements bind the same cellular proteins, CstF-64, U2AF65, and HuR. The minor inhibitory element binds some cellular proteins in common with the major inhibitory element, though it also binds certain proteins that do not bind the upstream element.


Author(s):  
Nathalie L. Ambounda ◽  
Sylvain H. Woromogo ◽  
Olive M. Kenmogne ◽  
Felicite E. Yagata Moussa ◽  
Vicky N. Simo Tekem ◽  
...  

Background: High-risk oncogenic human papillomaviruses (HPV) are the cause of sexually transmitted viral infection. Its persistence is a risk factor for precancerous lesions of the cervix, which will constitute the base of cervical cancer. In the world, the prevalence of high-risk oncogenic HPV is 66.7%, which is higher among women starting their sexual activity.Methods: An analytical cross-sectional study was conducted in high schools in Gabon regarding parents. The variables selected were the socio-cultural and demographic characteristics of the parents, their knowledge of human papillomavirus vaccination and their acceptability of HPV vaccination and finally the feasibility of HPV vaccination. The statistical test used was Pearson's Chi-square, and a difference was considered significant for p<0.05.Results: The majority of parents, 89%, were informed of the existence of cervical cancer. However, 73.4% of them were unaware of the existence of vaccination against cervical cancer. Only 2.4% of parents had vaccinated their daughters against cervical cancer at the time of the study. These parents only 53.4% expressed an interest in vaccinating their daughters in 53.4% of cases. The ability to vaccinate children is associated with the socio-professional status of parents (p˂0.000).Conclusions: The majority of parents approved school-based vaccination against human papillomavirus infections despite its reported cost and lack of information. The integration of anti-HPV vaccination into the expanded programme on immunization in Gabon will improve immunization coverage.


Sign in / Sign up

Export Citation Format

Share Document