scholarly journals Single Cell Transcriptomics Reveals Cell Type Specific Diversification in Human Heart Failure

2021 ◽  
Author(s):  
Andrew L Koenig ◽  
Irina Shchukina ◽  
Prabhakar S Andhey ◽  
Konstantin Zaitsev ◽  
Lulu Lai ◽  
...  

Heart failure represents a major cause of morbidity and mortality worldwide. Single cell transcriptomics have revolutionized our understanding of cell composition and associated gene expression across human tissues. Through integrated analysis of single cell and single nucleus RNA sequencing data generated from 45 individuals, we define the cell composition of the healthy and failing human heart. We identify cell specific transcriptional signatures of heart failure and reveal the emergence of disease associated cell states. Intriguingly, cardiomyocytes converge towards a common disease associated cell state, while fibroblasts and myeloid cells undergo dramatic diversification. Endothelial cells and pericytes display global transcriptional shifts without changes in cell complexity. Collectively, our findings provide a comprehensive analysis of the cellular and transcriptomic landscape of human heart failure, identify cell type specific transcriptional programs and states associated with disease, and establish a valuable resource for the investigation of human heart failure.

2021 ◽  
Author(s):  
Suvi Linna-Kuosmanen ◽  
Eloi Schmauch ◽  
Kyriakitsa Galani ◽  
Carles A. Boix ◽  
Lei Hou ◽  
...  

Ischemic heart disease is the single most common cause of death worldwide with an annual death rate of over 9 million people. Genome-wide association studies have uncovered over 200 genetic loci underlying the disease, providing a deeper understanding of the causal mechanisms leading to it. However, in order to understand ischemic heart disease at the cellular and molecular level, it is necessary to identify the cell-type-specific circuits enabling dissection of driver variants, genes, and signaling pathways in normal and diseased tissues. Here, we provide the first detailed single-cell dissection of the cell types and disease-associated gene expression changes in the living human heart, using cardiac biopsies collected during open-heart surgery from control, ischemic heart disease, and ischemic and non-ischemic heart failure patients. We identify 84 cell types/states, grouped in 12 major cell types. We define markers for each cell type, providing the first extensive reference set for the live human heart. These major cell types include cardiovascular cells (cardiomyocytes, endothelial cells, fibroblasts), rarer cell types (B lymphocytes, neurons, Schwann cells), and rich populations of previously understudied layer-specific epicardial and endocardial cells. In addition, we reveal substantial differences in disease-associated gene expression at the cell subtype level, revealing arterial pericytes as having a central role in the pathogenesis of ischemic heart disease and heart failure. Our results demonstrate the importance of high-resolution cellular subtype mapping in gaining mechanistic insight into human cardiovascular disease.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Sonja Lazarevic ◽  
Zhezhen Wang ◽  
Kaitlyn Shen ◽  
Margaret Gadek ◽  
Carlos Perez-Cervantes ◽  
...  

The transcriptional basis of homeostasis and disease is implied by the non-coding nature of genetic variation identified by GWAS. Functional genomic approaches to unveil the gene regulatory networks (GRNs) relevant to disease are therefore a high priority. Most models for transcriptional dysregulation presume that perturbation of a wild-type gene regulatory network causes disease risk. For example, the T-box transcription factor (TF) TBX5, is essential for atrial rhythm homeostasis and directly drives a physiologically relevant GRN composed of cardiac channel genes. Alternatively, the expression of many genes pertinent to cardiac pathology are upregulated after the removal of Tbx5, implicating a disease-specific GRN absent from the wild-type atrium. We applied TF-dependent noncoding RNA (ncRNA) profiling, using differential deep ncRNA sequencing from atria of wild-type and Tbx5 mutant mice, to identify TBX5-dependent enhancers and ncRNAs that were only activated following TBX5 removal. We hypothesized that these regulatory elements would reveal disease-response enhancers, essential for coping with atrial dysfunction. To identify the cell-specific regulatory elements, we generated cell-type specific Assay from Transposase-Accessible Chromatin (ATAC) datasets for left atrial tissue, cardiac fibroblasts, and cardiomyocytes. Overlap with the Tbx5 -repressed ncRNAs defined candidate cell-type specific regulatory elements. Candidate regulatory elements were identified upstream of Sox9, a known modulator of cardiac fibrosis, along with other cardiac stress-response pathways, including mediators of TGF-β signaling. Activation of the enhancer at Sox9 was confirmed in isolated cardiac fibroblasts treated with TGF-β. We hypothesized that the disease-acquired GRN in TBX5 mutant atria may be generalizable to other cardiac insults. We therefore examined the transcriptional and genomic changes in the left atria of the heart failure Transverse Aortic Constriction (TAC) mouse model. This analysis revealed remarkable correlation between differentially expressed genes and ncRNAs between TAC and TBX5 mutant disease models. The conservation of the coding and non-coding transcriptional response between arrhythmia and heart failure models supports a paradigm of a common disease-specific GRN that mediates the physiologic consequences of distinct cardiac diseases.


2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Man Rao ◽  
Xiliang Wang ◽  
Guangran Guo ◽  
Li Wang ◽  
Shi Chen ◽  
...  

2020 ◽  
Author(s):  
Kaifang Pang ◽  
Li Wang ◽  
Wei Wang ◽  
Jian Zhou ◽  
Chao Cheng ◽  
...  

AbstractRecent large-scale sequencing studies have identified a great number of genes whose disruptions cause neurodevelopmental disorders (NDDs). However, cell-type-specific functions of NDD genes and their contributions to NDD pathology are unclear. Here, we integrated NDD genetics with single-cell RNA sequencing data to identify cell-type and temporal convergence of genes involved in different NDDs. By assessing the co-expression enrichment pattern of various NDD gene sets, we identified mid-fetal cortical neural progenitor cell development—more specifically, ventricular radial glia-to-intermediate progenitor cell transition at gestational week 10—as a key convergent point in autism spectrum disorder (ASD) and epilepsy. Integrated gene ontology-based analyses further revealed that ASD genes function as upstream regulators to activate neural differentiation and inhibit cell cycle during the transition, whereas epilepsy genes function as downstream effectors in the same processes, offering a potential explanation for the high comorbidity rate of the two disorders. Together, our study provides a framework for investigating the cell-type-specific pathophysiology of NDDs.


2021 ◽  
Author(s):  
Dongqing Sun ◽  
Yihan Xiao ◽  
Zhaoyang Liu ◽  
Taiwen Li ◽  
Qiu Wu ◽  
...  

AbstractThe recent advances in spatial transcriptomics have brought unprecedented opportunities to understand the cellular heterogeneity in the spatial context. However, the current limitations of spatial technologies hamper the exploration of cellular localizations and interactions at single-cell level. Here, we present spatial transcriptomics deconvolution by topic modeling (STRIDE), a computational method to decompose cell-types from spatial mixtures by leveraging topic profiles trained from single-cell transcriptomics. STRIDE accurately estimated the cell-type proportions and showed balanced specificity and sensitivity compared to existing methods. We demonstrate STRIDE’s utility by applying it to different spatial platforms and biological systems. Deconvolution by STRIDE not only mapped rare cell-types to spatial locations but also improved the identification of spatial localized genes and domains. Moreover, topics discovered by STRIDE were associated with cell-type-specific functions, and could be further used to integrate successive sections and reconstruct the three-dimensional architecture of tissues. Taken together, STRIDE is a versatile and extensible tool for integrated analysis of spatial and single-cell transcriptomics and is publicly available at https://github.com/DongqingSun96/STRIDE.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Suvi Linna Kuosmanen ◽  
Eloi Schmauch ◽  
Kyriakitsa Galani ◽  
Carles Boix ◽  
Yongjin P Park ◽  
...  

Genome-wide association studies have uncovered over 200 genetic loci underlying coronary artery disease (CAD), providing great hope for a deeper understanding of the causal mechanisms leading to this disease. However, in order to understand CAD at the molecular level, it is necessary to uncover cell-type-specific circuits and to use these circuits to dissect driver variants, genes, pathways, and cell types, in normal and diseased tissues. Here, we provide the most detailed single-cell dissection of human heart cell types, using cardiac biopsies collected during open-heart surgery from healthy, CAD, and CAD-related heart failure donors, and profiling both transcriptional (scRNA-seq) and epigenomic (scATAC-seq) changes. Using this approach, we identify 12 major heart cell types, including typical cardiovascular cells (cardiomyocytes, endothelial cells, fibroblasts), rarer cell types (B cells, neurons, Schwann cells), and previously-unrecognized layer-specific epithelial and endothelial cell types. We define markers for each cell type, providing the first extensive reference set for the living human heart. In addition, we define differential gene expression patterns in CAD relative to control samples, revealing substantial differences in cell-type-specific expression of disease-related genes, emphasizing, for example, the importance of the vascular endothelium in the pathogenesis of CAD. Strikingly, further clustering of the cell types based on specific subtypes revealed important differences in their expression patterns of disease-associated genes. These changes enrich in known CAD genetic loci, enabling us to recognize their likely target genes from scRNA-seq expression changes, candidate driver variants based on scATAC-seq localization and differential DNA accessibility, and candidate upstream regulators based on their enriched motif occurrences in scATAC loci. Overall, our results highlight the relevance and potential of single-cell transcriptional and epigenomic analyses to gain new biological insights into cardiovascular disease, and to recognize novel therapeutic target genes, pathways, and the cell types where they act.


2020 ◽  
Author(s):  
Kengo Tejima ◽  
Satoshi Kozawa ◽  
Thomas N. Sato

AbstractComputational deconvolution of transcriptome data of organs/tissues uncovers their structural and functional complexities at cellular resolution without performing single-cell RNA-sequencing experiments. However, the deconvolution of highly heterogenous diverse organs/tissues remains a challenge. Herein, we report “cell type-specific weighting-factors” that are essential for accurate deconvolution, but critically lacking in the existing methods. We computed such weighting-factors for 97 cell-types across 10 mouse organs and demonstrate their effective usage in the Bayesian framework to generate their virtual single-cell RNA-sequencing data, hence accurately estimating both cell-type ratios and the complete transcriptome of each cell-type in these organs. The method also efficiently detects the temporal changes of such cell type-profiles during organ pathogenesis in disease models. Furthermore, we present its potential utility for human organ/bulk-tissue deconvolution. Taken together, the weighting-factors reported herein and their computation for new cell-types and/or new species such as human are essential tools/resources for studying high-resolution biology and disease.


Author(s):  
Christoph Muus ◽  
Malte D. Luecken ◽  
Gokcen Eraslan ◽  
Avinash Waghray ◽  
Graham Heimberg ◽  
...  

ABSTRACTThe COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document