Abstract 16742: Single-Cell Transcriptional and Epigenomic Dissection of Human Heart in Health and Coronary Artery Disease Reveals Cell-type-Specific Driver Genes and Pathways

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Suvi Linna Kuosmanen ◽  
Eloi Schmauch ◽  
Kyriakitsa Galani ◽  
Carles Boix ◽  
Yongjin P Park ◽  
...  

Genome-wide association studies have uncovered over 200 genetic loci underlying coronary artery disease (CAD), providing great hope for a deeper understanding of the causal mechanisms leading to this disease. However, in order to understand CAD at the molecular level, it is necessary to uncover cell-type-specific circuits and to use these circuits to dissect driver variants, genes, pathways, and cell types, in normal and diseased tissues. Here, we provide the most detailed single-cell dissection of human heart cell types, using cardiac biopsies collected during open-heart surgery from healthy, CAD, and CAD-related heart failure donors, and profiling both transcriptional (scRNA-seq) and epigenomic (scATAC-seq) changes. Using this approach, we identify 12 major heart cell types, including typical cardiovascular cells (cardiomyocytes, endothelial cells, fibroblasts), rarer cell types (B cells, neurons, Schwann cells), and previously-unrecognized layer-specific epithelial and endothelial cell types. We define markers for each cell type, providing the first extensive reference set for the living human heart. In addition, we define differential gene expression patterns in CAD relative to control samples, revealing substantial differences in cell-type-specific expression of disease-related genes, emphasizing, for example, the importance of the vascular endothelium in the pathogenesis of CAD. Strikingly, further clustering of the cell types based on specific subtypes revealed important differences in their expression patterns of disease-associated genes. These changes enrich in known CAD genetic loci, enabling us to recognize their likely target genes from scRNA-seq expression changes, candidate driver variants based on scATAC-seq localization and differential DNA accessibility, and candidate upstream regulators based on their enriched motif occurrences in scATAC loci. Overall, our results highlight the relevance and potential of single-cell transcriptional and epigenomic analyses to gain new biological insights into cardiovascular disease, and to recognize novel therapeutic target genes, pathways, and the cell types where they act.

2019 ◽  
Author(s):  
Alexandra Grubman ◽  
Gabriel Chew ◽  
John F. Ouyang ◽  
Guizhi Sun ◽  
Xin Yi Choo ◽  
...  

AbstractAlzheimer’s disease (AD) is a heterogeneous disease that is largely dependent on the complex cellular microenvironment in the brain. This complexity impedes our understanding of how individual cell types contribute to disease progression and outcome. To characterize the molecular and functional cell diversity in the human AD brain we utilized single nuclei RNA- seq in AD and control patient brains in order to map the landscape of cellular heterogeneity in AD. We detail gene expression changes at the level of cells and cell subclusters, highlighting specific cellular contributions to global gene expression patterns between control and Alzheimer’s patient brains. We observed distinct cellular regulation of APOE which was repressed in oligodendrocyte progenitor cells (OPCs) and astrocyte AD subclusters, and highly enriched in a microglial AD subcluster. In addition, oligodendrocyte and microglia AD subclusters show discordant expression of APOE. Integration of transcription factor regulatory modules with downstream GWAS gene targets revealed subcluster-specific control of AD cell fate transitions. For example, this analysis uncovered that astrocyte diversity in AD was under the control of transcription factor EB (TFEB), a master regulator of lysosomal function and which initiated a regulatory cascade containing multiple AD GWAS genes. These results establish functional links between specific cellular sub-populations in AD, and provide new insights into the coordinated control of AD GWAS genes and their cell-type specific contribution to disease susceptibility. Finally, we created an interactive reference web resource which will facilitate brain and AD researchers to explore the molecular architecture of subtype and AD-specific cell identity, molecular and functional diversity at the single cell level.HighlightsWe generated the first human single cell transcriptome in AD patient brainsOur study unveiled 9 clusters of cell-type specific and common gene expression patterns between control and AD brains, including clusters of genes that present properties of different cell types (i.e. astrocytes and oligodendrocytes)Our analyses also uncovered functionally specialized sub-cellular clusters: 5 microglial clusters, 8 astrocyte clusters, 6 neuronal clusters, 6 oligodendrocyte clusters, 4 OPC and 2 endothelial clusters, each enriched for specific ontological gene categoriesOur analyses found manifold AD GWAS genes specifically associated with one cell-type, and sets of AD GWAS genes co-ordinately and differentially regulated between different brain cell-types in AD sub-cellular clustersWe mapped the regulatory landscape driving transcriptional changes in AD brain, and identified transcription factor networks which we predict to control cell fate transitions between control and AD sub-cellular clustersFinally, we provide an interactive web-resource that allows the user to further visualise and interrogate our dataset.Data resource web interface:http://adsn.ddnetbio.com


2019 ◽  
Author(s):  
Tom Aharon Hait ◽  
Ran Elkon ◽  
Ron Shamir

AbstractSpatiotemporal gene expression patterns are governed to a large extent by enhancer elements, typically located distally from their target genes. Identification of enhancer-promoter (EP) links that are specific and functional in individual cell types is a key challenge in understanding gene regulation. We introduce CT-FOCS, a new statistical inference method that utilizes multiple replicates per cell type to infer cell type-specific EP links. Computationally predicted EP links are usually benchmarked against experimentally determined chromatin interactions measured by ChIA-PET and promoter-capture HiC techniques. We expand this validation scheme by using also loops that overlap in their anchor sites. In analyzing 1,366 samples from ENCODE, Roadmap epigenomics and FANTOM5, CT-FOCS inferred highly cell type-specific EP links more accurately than state-of-the-art methods. We illustrate how our inferred EP links drive cell type-specific gene expression and regulation.


2021 ◽  
Author(s):  
Suvi Linna-Kuosmanen ◽  
Eloi Schmauch ◽  
Kyriakitsa Galani ◽  
Carles A. Boix ◽  
Lei Hou ◽  
...  

Ischemic heart disease is the single most common cause of death worldwide with an annual death rate of over 9 million people. Genome-wide association studies have uncovered over 200 genetic loci underlying the disease, providing a deeper understanding of the causal mechanisms leading to it. However, in order to understand ischemic heart disease at the cellular and molecular level, it is necessary to identify the cell-type-specific circuits enabling dissection of driver variants, genes, and signaling pathways in normal and diseased tissues. Here, we provide the first detailed single-cell dissection of the cell types and disease-associated gene expression changes in the living human heart, using cardiac biopsies collected during open-heart surgery from control, ischemic heart disease, and ischemic and non-ischemic heart failure patients. We identify 84 cell types/states, grouped in 12 major cell types. We define markers for each cell type, providing the first extensive reference set for the live human heart. These major cell types include cardiovascular cells (cardiomyocytes, endothelial cells, fibroblasts), rarer cell types (B lymphocytes, neurons, Schwann cells), and rich populations of previously understudied layer-specific epicardial and endocardial cells. In addition, we reveal substantial differences in disease-associated gene expression at the cell subtype level, revealing arterial pericytes as having a central role in the pathogenesis of ischemic heart disease and heart failure. Our results demonstrate the importance of high-resolution cellular subtype mapping in gaining mechanistic insight into human cardiovascular disease.


2019 ◽  
Author(s):  
Ashley G. Anderson ◽  
Ashwinikumar Kulkarni ◽  
Matthew Harper ◽  
Genevieve Konopka

AbstractThe striatum is a critical forebrain structure for integrating cognitive, sensory, and motor information from diverse brain regions into meaningful behavioral output. However, the transcriptional mechanisms that underlie striatal development and organization at single-cell resolution remain unknown. Here, we show that Foxp1, a transcription factor strongly linked to autism and intellectual disability, regulates organizational features of striatal circuitry in a cell-type-dependent fashion. Using single-cell RNA-sequencing, we examine the cellular diversity of the early postnatal striatum and find that cell-type-specific deletion ofFoxp1in striatal projection neurons alters the cellular composition and neurochemical architecture of the striatum. Importantly, using this approach, we identify the non-cell autonomous effects produced by disruptingFoxp1in one cell-type and the molecular compensation that occurs in other populations. Finally, we identify Foxp1-regulated target genes within distinct cell-types and connect these molecular changes to functional and behavioral deficits relevant to phenotypes described in patients withFOXP1loss-of-function mutations. These data reveal cell-type-specific transcriptional mechanisms underlying distinct features of striatal circuitry and identify Foxp1 as a key regulator of striatal development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

AbstractChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10–50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1–5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rongxin Fang ◽  
Sebastian Preissl ◽  
Yang Li ◽  
Xiaomeng Hou ◽  
Jacinta Lucero ◽  
...  

AbstractIdentification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254194
Author(s):  
Hong-Tae Park ◽  
Woo Bin Park ◽  
Suji Kim ◽  
Jong-Sung Lim ◽  
Gyoungju Nah ◽  
...  

Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne’s disease, which is a chronic and debilitating disease in ruminants. MAP is also considered to be a possible cause of Crohn’s disease in humans. However, few studies have focused on the interactions between MAP and human macrophages to elucidate the pathogenesis of Crohn’s disease. We sought to determine the initial responses of human THP-1 cells against MAP infection using single-cell RNA-seq analysis. Clustering analysis showed that THP-1 cells were divided into seven different clusters in response to phorbol-12-myristate-13-acetate (PMA) treatment. The characteristics of each cluster were investigated by identifying cluster-specific marker genes. From the results, we found that classically differentiated cells express CD14, CD36, and TLR2, and that this cell type showed the most active responses against MAP infection. The responses included the expression of proinflammatory cytokines and chemokines such as CCL4, CCL3, IL1B, IL8, and CCL20. In addition, the Mreg cell type, a novel cell type differentiated from THP-1 cells, was discovered. Thus, it is suggested that different cell types arise even when the same cell line is treated under the same conditions. Overall, analyzing gene expression patterns via scRNA-seq classification allows a more detailed observation of the response to infection by each cell type.


Sign in / Sign up

Export Citation Format

Share Document