scholarly journals Viral infection and Transmission in a large well-traced outbreak caused by the Delta SARS-CoV-2 variant

Author(s):  
Baisheng Li ◽  
Aiping Deng ◽  
Kuibiao Li ◽  
Yao Hu ◽  
Zhencui Li ◽  
...  

We report the first local transmission of the Delta SARS-CoV-2 variant in mainland China. All 167 infections could be traced back to the first index case. The investigation on daily sequential PCR testing of the quarantined subjects indicated the viral load of the first positive test of Delta infections was ~1000 times higher than that of the 19A/19B strains infections back in the initial epidemic wave of 2020, suggesting the potential faster viral replication rate and more infectiousness of the Delta variant at the early stage of the infection. The 126 high-quality sequencing data and reliable epidemiological data indicated some minor intra-host single nucleotide variants (iSNVs) could be transmitted between hosts and finally fixed in the virus population during the outbreak. The minor iSNVs transmission between donor-recipient contribute at least 4 of 31 substitutions identified in the outbreak suggesting some iSNVs more likely to arise and reach fixation when the virus spread rapidly. Disease control measures, including the frequency of population testing, quarantine in pre-symptomatic phase and enhancing the genetic surveillance should be adjusted to account for the increasing prevalence of the Delta variant at global level.

2021 ◽  
Author(s):  
Jing Lu ◽  
Baisheng Li ◽  
Aiping Deng ◽  
Kuibiao Li ◽  
Yao Hu ◽  
...  

Abstract We report the first local transmission of the SARS-CoV-2 Delta variant in mainland China. All 167 infections could be traced back to the first index case. Daily sequential PCR testing of the quarantined subjects indicated that the viral loads of Delta infections, when they first become PCR+, were on average ~1000 times greater compared to A/B lineage infections during initial epidemic wave in China in early 2020, suggesting potentially faster viral replication and greater infectiousness of Delta during early infection. We performed high-quality sequencing on samples from 126 individuals. Reliable epidemiological data meant that, for 111 transmission events, the donor and recipient cases were known. The estimated transmission bottleneck size was 1-3 virions with most minor intra-host single nucleotide variants (iSNVs) failing to transmit to the recipients. However, transmission heterogeneity of SARS-CoV-2 was also observed. The transmission of minor iSNVs resulted in at least 4 of the 30 substitutions identified in the outbreak, highlighting the contribution of intra-host variants to population level viral diversity during rapid spread. Disease control activities, such as the frequency of population testing, quarantine during pre-symptomatic infection, and level of virus genomic surveillance should be adjusted in order to account for the increasing prevalence of the Delta variant worldwide.


2020 ◽  
Author(s):  
Daniel Shriner ◽  
Adebowale Adeyemo ◽  
Charles Rotimi

In clinical genomics, variant calling from short-read sequencing data typically relies on a pan-genomic, universal human reference sequence. A major limitation of this approach is that the number of reads that incorrectly map or fail to map increase as the reads diverge from the reference sequence. In the context of genome sequencing of genetically diverse Africans, we investigate the advantages and disadvantages of using a de novo assembly of the read data as the reference sequence in single sample calling. Conditional on sufficient read depth, the alignment-based and assembly-based approaches yielded comparable sensitivity and false discovery rates for single nucleotide variants when benchmarked against a gold standard call set. The alignment-based approach yielded coverage of an additional 270.8 Mb over which sensitivity was lower and the false discovery rate was higher. Although both approaches detected and missed clinically relevant variants, the assembly-based approach identified more such variants than the alignment-based approach. Of particular relevance to individuals of African descent, the assembly-based approach identified four heterozygous genotypes containing the sickle allele whereas the alignment-based approach identified no occurrences of the sickle allele. Variant annotation using dbSNP and gnomAD identified systematic biases in these databases due to underrepresentation of Africans. Using the counts of homozygous alternate genotypes from the alignment-based approach as a measure of genetic distance to the reference sequence GRCh38.p12, we found that the numbers of misassemblies, total variant sites, potentially novel single nucleotide variants (SNVs), and certain variant classes (e.g., splice acceptor variants, stop loss variants, missense variants, synonymous variants, and variants absent from gnomAD) were significantly correlated with genetic distance. In contrast, genomic coverage and other variant classes (e.g., ClinVar pathogenic or likely pathogenic variants, start loss variants, stop gain variants, splice donor variants, incomplete terminal codons, variants with CADD score ≥20) were not correlated with genetic distance. With improvement in coverage, the assembly-based approach can offer a viable alternative to the alignment-based approach, with the advantage that it can obviate the need to generate diverse human reference sequences or collections of alternate scaffolds.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Andrew Currin ◽  
Neil Swainston ◽  
Mark S Dunstan ◽  
Adrian J Jervis ◽  
Paul Mulherin ◽  
...  

Abstract Synthetic biology utilizes the Design–Build–Test–Learn pipeline for the engineering of biological systems. Typically, this requires the construction of specifically designed, large and complex DNA assemblies. The availability of cheap DNA synthesis and automation enables high-throughput assembly approaches, which generates a heavy demand for DNA sequencing to verify correctly assembled constructs. Next-generation sequencing is ideally positioned to perform this task, however with expensive hardware costs and bespoke data analysis requirements few laboratories utilize this technology in-house. Here a workflow for highly multiplexed sequencing is presented, capable of fast and accurate sequence verification of DNA assemblies using nanopore technology. A novel sample barcoding system using polymerase chain reaction is introduced, and sequencing data are analyzed through a bespoke analysis algorithm. Crucially, this algorithm overcomes the problem of high-error rate nanopore data (which typically prevents identification of single nucleotide variants) through statistical analysis of strand bias, permitting accurate sequence analysis with single-base resolution. As an example, 576 constructs (6 × 96 well plates) were processed in a single workflow in 72 h (from Escherichia coli colonies to analyzed data). Given our procedure’s low hardware costs and highly multiplexed capability, this provides cost-effective access to powerful DNA sequencing for any laboratory, with applications beyond synthetic biology including directed evolution, single nucleotide polymorphism analysis and gene synthesis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Pengcheng Du ◽  
Nan Ding ◽  
Jiarui Li ◽  
Fujie Zhang ◽  
Qi Wang ◽  
...  

Abstract The spread of SARS-CoV-2 in Beijing before May, 2020 resulted from transmission following both domestic and global importation of cases. Here we present genomic surveillance data on 102 imported cases, which account for 17.2% of the total cases in Beijing. Our data suggest that all of the cases in Beijing can be broadly classified into one of three groups: Wuhan exposure, local transmission and overseas imports. We classify all sequenced genomes into seven clusters based on representative high-frequency single nucleotide polymorphisms (SNPs). Genomic comparisons reveal higher genomic diversity in the imported group compared to both the Wuhan exposure and local transmission groups, indicating continuous genomic evolution during global transmission. The imported group show region-specific SNPs, while the intra-host single nucleotide variations present as random features, and show no significant differences among groups. Epidemiological data suggest that detection of cases at immigration with mandatory quarantine may be an effective way to prevent recurring outbreaks triggered by imported cases. Notably, we also identify a set of novel indels. Our data imply that SARS-CoV-2 genomes may have high mutational tolerance.


2019 ◽  
Vol 36 (3) ◽  
pp. 713-720 ◽  
Author(s):  
Mary A Wood ◽  
Austin Nguyen ◽  
Adam J Struck ◽  
Kyle Ellrott ◽  
Abhinav Nellore ◽  
...  

Abstract Motivation The vast majority of tools for neoepitope prediction from DNA sequencing of complementary tumor and normal patient samples do not consider germline context or the potential for the co-occurrence of two or more somatic variants on the same mRNA transcript. Without consideration of these phenomena, existing approaches are likely to produce both false-positive and false-negative results, resulting in an inaccurate and incomplete picture of the cancer neoepitope landscape. We developed neoepiscope chiefly to address this issue for single nucleotide variants (SNVs) and insertions/deletions (indels). Results Herein, we illustrate how germline and somatic variant phasing affects neoepitope prediction across multiple datasets. We estimate that up to ∼5% of neoepitopes arising from SNVs and indels may require variant phasing for their accurate assessment. neoepiscope is performant, flexible and supports several major histocompatibility complex binding affinity prediction tools. Availability and implementation neoepiscope is available on GitHub at https://github.com/pdxgx/neoepiscope under the MIT license. Scripts for reproducing results described in the text are available at https://github.com/pdxgx/neoepiscope-paper under the MIT license. Additional data from this study, including summaries of variant phasing incidence and benchmarking wallclock times, are available in Supplementary Files 1, 2 and 3. Supplementary File 1 contains Supplementary Table 1, Supplementary Figures 1 and 2, and descriptions of Supplementary Tables 2–8. Supplementary File 2 contains Supplementary Tables 2–6 and 8. Supplementary File 3 contains Supplementary Table 7. Raw sequencing data used for the analyses in this manuscript are available from the Sequence Read Archive under accessions PRJNA278450, PRJNA312948, PRJNA307199, PRJNA343789, PRJNA357321, PRJNA293912, PRJNA369259, PRJNA305077, PRJNA306070, PRJNA82745 and PRJNA324705; from the European Genome-phenome Archive under accessions EGAD00001004352 and EGAD00001002731; and by direct request to the authors. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Maddumage Dona Ginushika Priyadarsh Premarathne ◽  
Nami Fukutome ◽  
Kazuaki Yamasaki ◽  
Fumiyo Hayakawa ◽  
Atsushi J. Nagano ◽  
...  

AbstractJapanese pepper, Zanthoxylum piperitum, is native to Japan and has four famous varieties: Asakura, Takahara, Budou, and Arima, named after their production area or morphology. Restriction-site associated DNA sequencing (RAD-Seq) was used to analyse 93 accessions from various areas, including these four varieties. The analysis of the single nucleotide variants was used to classify the plants into eight groups: each of the Asakura and Arima varieties has two groups, each of the Takahara and Budou varieties has one group, and two additional groups are present. In one group of the Asakura varieties and two groups of the Arima varieties, the plants were present in agricultural fields and mountains, representing the early stage of domestication of the Japanese pepper. The second group of the Asakura varieties was of genetically close plants present in various areas, which represents the second stage of domestication of this plant because, after early domestication, genetically related varieties of excellent traits spread to the periphery. These results demonstrate that the domestication of the Japanese pepper is ongoing. In addition, this study shows that spineless plants are polyphyletic, despite the spineless variety being considered a subspecies of the Japanese pepper.


2019 ◽  
Vol 4 ◽  
pp. 145
Author(s):  
Matthew N. Wakeling ◽  
Thomas W. Laver ◽  
Kevin Colclough ◽  
Andrew Parish ◽  
Sian Ellard ◽  
...  

Multiple Nucleotide Variants (MNVs) are miscalled by the most widely utilised next generation sequencing analysis (NGS) pipelines, presenting the potential for missing diagnoses that would previously have been made by standard Sanger (dideoxy) sequencing. These variants, which should be treated as a single insertion-deletion mutation event, are commonly called as separate single nucleotide variants. This can result in misannotation, incorrect amino acid predictions and potentially false positive and false negative diagnostic results. This risk will be increased as confirmatory Sanger sequencing of Single Nucleotide variants (SNVs) ceases to be standard practice. Using simulated data and re-analysis of sequencing data from a diagnostic targeted gene panel, we demonstrate that the widely adopted pipeline, GATK best practices, results in miscalling of MNVs and that alternative tools can call these variants correctly. The adoption of calling methods that annotate MNVs correctly would present a solution for individual laboratories, however GATK best practices are the basis for important public resources such as the gnomAD database. We suggest integrating a solution into these guidelines would be the optimal approach.


2018 ◽  
Author(s):  
Dimitrios Kleftogiannis ◽  
Marco Punta ◽  
Anuradha Jayaram ◽  
Shahneen Sandhu ◽  
Stephen Q. Wong ◽  
...  

AbstractBackgroundTargeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs).MethodsTo address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection.ResultsOur tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments.ConclusionsAmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve.


Author(s):  
Ze Zhang ◽  
Yuanyuan Guo ◽  
Rongjia Zhang ◽  
Wuchen Yang ◽  
Zhengqing Xie ◽  
...  

CRISPR/Cas9 gene targeting technology has become the most widely used gene editing technology in both plants and animals. However, substantial off-target effect remains as a major imperfection hindering its further application. Here, Nicotiana benthamiana leaf cell-free system was used to simulate in vivo environment. And the effects of different CRISPR/Cas9 components on DNA stability in cell-free system were studied to explore possible mechanisms causing CRISPR off-target. The results showed that overexpressing Cas9, nCas9 and dCas9 significantly inhibited DNA cleavage in the cell extracts. While overexpressing RNPs accelerated the target DNA cleavage but inhibited non-target DNA digestion in cell extracts, overexpressing nRNP and dRNP blocked the cleavage of either target or non-target sequences. Meanwhile, analysis of whole-genome sequencing data from mice and rice edited by different CRISPR tools revealed that the main off-target mutations were SNVs (single nucleotide variants), rather than Indels (insertions and deletions) that were readily induced by DNA double-strand breaks. The off-target sites did not match the conventionally predicted places but were PAM-rich sites preferred. Our study suggests that PAM-dependent binding without cleavage of CRISPR/Cas9 to non-target sequences may increase off-target mutation risks through impeding the necessary cleavage process for repairing spontaneous or environmentally induced non-targeted DNA mutations.


Sign in / Sign up

Export Citation Format

Share Document