scholarly journals BNT162b2 vaccine-induced humoral and cellular responses against SARS-CoV-2 variants in Systemic Lupus Erythematosus

Author(s):  
Quentin Moyon ◽  
Delphine Sterlin ◽  
Makoto Miyara ◽  
Francois Anna ◽  
Alexis Mathian ◽  
...  

Objectives: Our aims were to evaluate Systemic Lupus Erythematosus (SLE) disease activity and SARS-CoV-2 specific immune responses after BNT162b2 vaccination. Methods: In this prospective study, disease activity and clinical assessments were recorded from the first dose of vaccine, until day 15 after the second dose in 126 SLE patients. SARS-CoV-2 antibody responses were measured against wild-type spike antigen while serum-neutralizing activity was assessed against the SARS-CoV-2 historical strain and variants of concerns (VOCs). Vaccine-specific T-cell responses were quantified by Interferon (IFN)-gamma; release assay after the second dose. Results: BNT162b2 was well tolerated and no statistically significant variations of BILAG and SLEDAI scores were observed throughout the study in SLE patients with active and inactive disease at baseline. Mycophenolate Mofetil (MMF) and Methotrexate (MTX) treatments were associated with drastically reduced BNT162b2 antibody-response (beta=-78; p=0.007, beta=-122; p<0.001, respectively). Anti-spike antibody response was positively associated with baseline total IgG serum levels, naive B cell frequencies (beta=2; p=0.018, beta=2.5; p=0.003) and SARS-CoV-2-specific T cell response (r=0.462; p=0.003). In responders, serum neutralization activity decreased against VOCs bearing the E484K mutation but remained detectable in a majority of patients. Conclusion: MMF, MTX and poor baseline humoral immune status, particularly: low naive B cell frequencies, are independently associated with impaired BNT162b2 mRNA antibody response, delineating SLE patients who might need adapted vaccine regimens and follow-up.

2021 ◽  
pp. annrheumdis-2021-221097
Author(s):  
Quentin Moyon ◽  
Delphine Sterlin ◽  
Makoto Miyara ◽  
François Anna ◽  
Alexis Mathian ◽  
...  

ObjectivesOur aim was to evaluate systemic lupus erythematosus (SLE) disease activity and SARS-CoV-2-specific immune responses after BNT162b2 vaccination.MethodsIn this prospective study, disease activity and clinical assessments were recorded from the first dose of vaccine until day 15 after the second dose in 126 patients with SLE. SARS-CoV-2 antibody responses were measured against wild-type spike antigen, while serum-neutralising activity was assessed against the SARS-CoV-2 historical strain and variants of concerns (VOCs). Vaccine-specific T cell responses were quantified by interferon-γ release assay after the second dose.ResultsBNT162b2 was well tolerated and no statistically significant variations of BILAG (British Isles Lupus Assessment Group) and SLEDAI (SLE Disease Activity Index) scores were observed throughout the study in patients with SLE with active and inactive disease at baseline. Mycophenolate mofetil (MMF) and methotrexate (MTX) treatments were associated with drastically reduced BNT162b2 antibody response (β=−78, p=0.007; β=−122, p<0.001, respectively). Anti-spike antibody response was positively associated with baseline total immunoglobulin G serum levels, naïve B cell frequencies (β=2, p=0.018; β=2.5, p=0.003) and SARS-CoV-2-specific T cell response (r=0.462, p=0.003). In responders, serum neutralisation activity decreased against VOCs bearing the E484K mutation but remained detectable in a majority of patients.ConclusionMMF, MTX and poor baseline humoral immune status, particularly low naïve B cell frequencies, are independently associated with impaired BNT162b2 mRNA antibody response, delineating patients with SLE who might need adapted vaccine regimens and follow-up.


Lupus ◽  
2017 ◽  
Vol 26 (9) ◽  
pp. 975-982 ◽  
Author(s):  
M Sahebari ◽  
G Roshandel ◽  
N Saadati ◽  
M Saghafi ◽  
N Abdolahi ◽  
...  

Background Cathelicidin (LL-37), an endogenous antimicrobial peptide, has recently been involved in the pathogenesis of autoimmune diseases. To assess whether LL-37 reflects disease activity, we measured serum levels of it in systemic lupus erythematosus (SLE) patients with active and inactive disease compared to healthy controls. LL-37 was also compared between new and old cases. Moreover, the correlation of LL-37 and pro-oxidant, antioxidant balance (PAB) was measured. Methods The study population consisted of 50 SLE patients and 28 healthy controls. Of those, 39 patients had active and 11 patients had inactive disease. Serum levels of LL-37 were measured by ELISA and PAB values by a special method. Results There was no difference in levels of LL-37 between patients and healthy controls (50.9 ± 20.8 vs. 67.7 ± 43.3 ng/ml, P = 0.31). LL-37 did not correlate with SLEDAI and its items in total patients. LL-37 had a positive correlation with SLEDAI in active patients ( P = 0.01, r = 0.4). In active patients (78% of patients), multivariate regression analysis showed significant negative correlation between LL-37 and C3 ( P = 0.01, standardized beta –0.50). No difference was found in levels of PAB between patients and controls (90.4 ± 34.1 vs. 86.9 ± 25.6 HK, P = 0.4).There was no difference in the levels of PAB between patients with active and inactive disease (93.2 ± 34.1 vs. 80.2 ± 33.7 HK, P = 0.27). No correlation was found between levels of PAB and SLEDAI items and total score. However, a positive correlation between the levels of LL-37 and PAB in SLE patients was found ( r = 0.3, P < 0.01). Conclusion Based on this study, serum LL-37 and PAB did not increase in lupus compared with healthy individuals. LL-37 serum values rose in parallel with SLEDAI in active disease. Positive correlation between serum PAB and LL-37 could be a great achievement of this study that may suggest the role of antioxidants in controlling NETosis.


2020 ◽  
Vol 9 (11) ◽  
pp. 3563
Author(s):  
Tomoyuki Asano ◽  
Naoki Matsuoka ◽  
Yuya Fujita ◽  
Haruki Matsumoto ◽  
Jumpei Temmoku ◽  
...  

Objective: T cell immunoglobulin and mucin-domain-containing molecule 3 (TIM-3) is implicated in the development of various autoimmune diseases. We aimed to investigate the levels of soluble TIM-3 (sTIM-3) and their associations between clinical parameters in patients with systemic lupus erythematosus (SLE). Methods: Serum samples were collected from 65 patients with SLE and 35 age-matched healthy controls (HCs). The SLE Disease Activity Index 2000 (SLEDAI-2K) and the Systemic Lupus International Collaborating Clinics (SLICC) damage index (SDI) were used to assess SLE disease activity and SLE-related organ damage. British Isles Lupus Assessment Group (BILAG)-2004 index was also used to assess SLE disease activity. Soluble TIM-3 (sTIM-3) in sera from patients with SLE and HCs were evaluated by enzyme-linked immunosorbent assay (ELISA). The results were compared with the clinical parameters of SLE including SLE disease activity. Results: Serum sTIM-3 levels in patients with SLE (median 2123 pg/mL (interquartile range (IQR), 229–7235)) were significantly higher than those in HCs (1363 pg/mL; IQR, 1097–1673; p = 0.0015). Serum levels of sTIM-3 were correlated with disease activity of SLE using the SLEDAI-2K score (p < 0.001, r = 0.53). The serum sTIM-3 levels in SLE patients with active renal disease (BILAG renal index A-B) were significantly higher than those without the active renal disease (BILAG renal index C–E). However, no significant difference was observed in serum sTIM-3 levels between SLE patients with and without active involvement in other organs (BILAG index). Serum sTIM-3 levels were significantly elevated in SLE patients with organ damage (2710 pg/mL; IQR, 256–7235) compared to those without organ damage (1532 pg/mL; IQR, 228–5274), as assessed by the SDI (p = 0.0102). Conclusions: Circulating sTIM-3 levels are elevated in SLE patients, and serum sTIM-3 levels are associated with SLE disease activity and SLE-related organ damage. The data indicate a possible link between the TIM-3/Gal-9 pathway and SLE clinical phenotypes, and further investigation of the TIM-3 pathway in SLE pathophysiology is warranted.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Kittikorn Wangriatisak ◽  
Chokchai Thanadetsuntorn ◽  
Thamonwan Krittayapoositpot ◽  
Chaniya Leepiyasakulchai ◽  
Thanitta Suangtamai ◽  
...  

Abstract Background Autoreactive B cells are well recognized as key participants in the pathogenesis of systemic lupus erythematosus (SLE). However, elucidating the particular subset of B cells in producing anti-dsDNA antibodies is limited due to their B cell heterogeneity. This study aimed to identify peripheral B cell subpopulations that display autoreactivity to DNA and contribute to lupus pathogenesis. Methods Flow cytometry was used to detect total B cell subsets (n = 20) and DNA autoreactive B cells (n = 15) in SLE patients’ peripheral blood. Clinical disease activities were assessed in SLE patients using modified SLEDAI-2 K and used for correlation analyses with expanded B cell subsets and DNA autoreactive B cells. Results The increases of circulating double negative 2 (DN2) and activated naïve (aNAV) B cells were significantly observed in SLE patients. Expanded B cell subsets and DNA autoreactive B cells represented a high proportion of aNAV B cells with overexpression of CD69 and CD86. The frequencies of aNAV B cells in total B cell populations were significantly correlated with modified SLEDAI-2 K scores. Further analysis showed that expansion of aNAV DNA autoreactive B cells was more related to disease activity and serum anti-dsDNA antibody levels than to total aNAV B cells. Conclusion Our study demonstrated an expansion of aNAV B cells in SLE patients. The association between the frequency of aNAV B cells and disease activity patients suggested that these expanded B cells may play a role in SLE pathogenesis.


2021 ◽  
Vol 19 ◽  
pp. 205873922110005
Author(s):  
Di Zhao ◽  
Xiao Yang ◽  
Jie Zhang ◽  
Yi Zhang

T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) has been found to play important roles in systemic lupus erythematosus (SLE), however, whether Tim-3 is involved in apoptosis of NK cells in SLE remains unknown. The proportion of CD3−CD56+ NK cells and the percentage of AnnexinV+ NK cells were analyzed by flow cytometry in SLE patients and healthy controls. Tim-3 expression on NK cells was also evaluated by flow cytometry. We firstly observed a decreased proportion of NK cells and an increased proportion of apoptotic NK cells in SLE patients. The proportion of apoptotic NK cells was positively correlated with anti-dsDNA and SLEDAI. Tim-3 expression on NK cells was up-regulated in SLE patients. Further analysis showed that Tim-3 expression on NK cells was negatively correlated with the proportion of apoptotic NK cells, anti-dsDNA and SLEDAI, while positively correlated with the proportion of NK cells. The present results suggest that Tim-3 might play roles in SLE by regulating the apoptosis of NK cells and Tim-3 might serve as a potential target for the treatment of SLE.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Conti Fabrizio ◽  
Ceccarelli Fulvia ◽  
Perricone Carlo ◽  
Massaro Laura ◽  
Marocchi Elisa ◽  
...  

Objectives. The anti-dsDNA antibodies are a marker for Systemic Lupus Erythematosus (SLE) and 70–98% of patients test positive. We evaluated the demographic, clinical, laboratory, and therapeutical features of a monocentric SLE cohort according to the anti-dsDNA status.Methods. We identified three groups: anti-dsDNA + (persistent positivity); anti-dsDNA ± (initial positivity and subsequent negativity during disease course); anti-dsDNA − (persistent negativity). Disease activity was assessed by the European Consensus Lupus Activity Measurement (ECLAM).Results. We evaluated 393 patients (anti-dsDNA +: 62.3%; anti-dsDNA ±: 13.3%; anti-dsDNA −: 24.4%). The renal involvement was significantly more frequent in anti-dsDNA + (30.2%), compared with anti-dsDNA ± and anti-dsDNA − (21.1% and 18.7%, resp.;P=0.001). Serositis resulted significantly more frequent in anti-dsDNA − (82.3%) compared to anti-dsDNA + and anti-dsDNA ± (20.8% and 13.4%, resp.;P<0.0001). The reduction of C4 serum levels was identified significantly more frequently in anti-dsDNA + and anti-dsDNA ± (40.0% and 44.2%, resp.) compared with anti-dsDNA − (21.8%,P=0.005). We did not identify significant differences in the mean ECLAM values before and after modification of anti-dsDNA status (P=0.7).Conclusion. Anti-dsDNA status influences the clinical and immunological features of SLE patients. Nonetheless, it does not appear to affect disease activity.


1991 ◽  
Vol 37 (1) ◽  
pp. 47-50 ◽  
Author(s):  
Lakana Leohirun ◽  
Phlchal Thuvasethakul ◽  
Vasant Sumethkul ◽  
Trithar Pholcharoen ◽  
VlJitr Boonpucknavig

Abstract Concentrations of neopterin were measured in urine specimens from 35 patients with active and eight with inactive systemic lupus erythematosus (SLE). Compared with those of apparently healthy controls, neopterin concentrations were higher in patients with active disease (P less than 0.001) and with inactive disease (P less than 0.01), those in patients with active disease being significantly higher than those in patients with inactive disease (P less than 0.001). The correlation between the neopterin concentration and evidence of disease activity was good. All of the patients with clinically active SLE had increased neopterin, but for only 37.5% (three of eight) did the neopterin concentration exceed the upper normal limit during clinical remission. The increase in neopterin concentration did not correlate with clinical courses or severity of renal function. Moreover, serial determinations of neopterin in active SLE patients showed a rapid decrease of initially high concentration, paralleling a decline of clinical activity after initiation of medical therapy. Thus, urinary neopterin may be a useful marker for monitoring disease activity in SLE patients.


Sign in / Sign up

Export Citation Format

Share Document