scholarly journals Establishment of 3D chromatin structure after fertilization and the metabolic switch at the morula-to-blastocyst transition require CTCF

2021 ◽  
Author(s):  
Maria Jose Andreu ◽  
Alba Alvarez-Franco ◽  
Marta Portela ◽  
Daniel Gimenez-Llorente ◽  
Ana Cuadrado ◽  
...  

The eukaryotic genome is tightly packed inside the nucleus, where it is organized in 3D at different scales. This structure is driven and maintained by different chromatin states and by architectural factors that bind DNA, such as the multi-zinc finger protein CTCF. Zygotic genome structure is established de novo after fertilization, but the impact of such structure on genome function during the first stages of mammalian development is still unclear. Here, we show that deletion of the Ctcf gene in mouse embryos impairs the correct establishment of chromatin structure, but initial lineage decisions take place and embryos are viable until the late blastocyst stage. Furthermore, we observe that maternal CTCF is not necessary for development. Transcriptomic analyses of mutant embryos show that the changes in metabolic and protein homeostasis programs that occur during the progression from the morula to the blastocyst depend on CTCF. Yet, these changes in gene expression do not correlate with disruption of chromatin structure, but mainly with proximal binding of CTCF to the promoter region of genes downregulated in mutants. Our results show that CTCF regulates both 3D genome organization and transcription during mouse preimplantation development, but mostly as independent processes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diana Buitrago ◽  
Mireia Labrador ◽  
Juan Pablo Arcon ◽  
Rafael Lema ◽  
Oscar Flores ◽  
...  

AbstractDetermining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 788 ◽  
Author(s):  
Li ◽  
An ◽  
Zhang

During gametogenesis and early embryonic development, the chromatin architecture changes dramatically, and both the transcriptomic and epigenomic landscape are comprehensively reprogrammed. Understanding these processes is the holy grail in developmental biology and a key step towards evolution. The 3D conformation of chromatin plays a central role in the organization and function of nuclei. Recently, the dynamics of chromatin structures have been profiled in many model and non-model systems, from insects to mammals, resulting in an interesting comparison. In this review, we first introduce the research methods of 3D chromatin structure with low-input material suitable for embryonic study. Then, the dynamics of 3D chromatin architectures during gametogenesis and early embryonic development is summarized and compared between species. Finally, we discuss the possible mechanisms for triggering the formation of genome 3D conformation in early development.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jacob T. Sanders ◽  
Trevor F. Freeman ◽  
Yang Xu ◽  
Rosela Golloshi ◽  
Mary A. Stallard ◽  
...  

AbstractThe three-dimensional structure of chromosomes plays an important role in gene expression regulation and also influences the repair of radiation-induced DNA damage. Genomic aberrations that disrupt chromosome spatial domains can lead to diseases including cancer, but how the 3D genome structure responds to DNA damage is poorly understood. Here, we investigate the impact of DNA damage response and repair on 3D genome folding using Hi-C experiments on wild type cells and ataxia telangiectasia mutated (ATM) patient cells. We irradiate fibroblasts, lymphoblasts, and ATM-deficient fibroblasts with 5 Gy X-rays and perform Hi-C at 30 minutes, 24 hours, or 5 days after irradiation. We observe that 3D genome changes after irradiation are cell type-specific, with lymphoblastoid cells generally showing more contact changes than irradiated fibroblasts. However, all tested repair-proficient cell types exhibit an increased segregation of topologically associating domains (TADs). This TAD boundary strengthening after irradiation is not observed in ATM deficient fibroblasts and may indicate the presence of a mechanism to protect 3D genome structure integrity during DNA damage repair.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Richard J. Edwards ◽  
Matt A. Field ◽  
James M. Ferguson ◽  
Olga Dudchenko ◽  
Jens Keilwagen ◽  
...  

Abstract Background Basenjis are considered an ancient dog breed of central African origins that still live and hunt with tribesmen in the African Congo. Nicknamed the barkless dog, Basenjis possess unique phylogeny, geographical origins and traits, making their genome structure of great interest. The increasing number of available canid reference genomes allows us to examine the impact the choice of reference genome makes with regard to reference genome quality and breed relatedness. Results Here, we report two high quality de novo Basenji genome assemblies: a female, China (CanFam_Bas), and a male, Wags. We conduct pairwise comparisons and report structural variations between assembled genomes of three dog breeds: Basenji (CanFam_Bas), Boxer (CanFam3.1) and German Shepherd Dog (GSD) (CanFam_GSD). CanFam_Bas is superior to CanFam3.1 in terms of genome contiguity and comparable overall to the high quality CanFam_GSD assembly. By aligning short read data from 58 representative dog breeds to three reference genomes, we demonstrate how the choice of reference genome significantly impacts both read mapping and variant detection. Conclusions The growing number of high-quality canid reference genomes means the choice of reference genome is an increasingly critical decision in subsequent canid variant analyses. The basal position of the Basenji makes it suitable for variant analysis for targeted applications of specific dog breeds. However, we believe more comprehensive analyses across the entire family of canids is more suited to a pangenome approach. Collectively this work highlights the importance the choice of reference genome makes in all variation studies.


2019 ◽  
Author(s):  
Ron Schwessinger ◽  
Matthew Gosden ◽  
Damien Downes ◽  
Richard Brown ◽  
Jelena Telenius ◽  
...  

AbstractUnderstanding 3D genome structure requires high throughput, genome-wide approaches. However, assays for all vs. all chromatin interaction mapping are expensive and time consuming, which severely restricts their usage for large-scale mutagenesis screens or for mapping the impact of sequence variants. Computational models sophisticated enough to grasp the determinants of chromatin folding provide a unique window into the functional determinants of 3D genome structure as well as the effects of genome variation.A chromatin interaction predictor should work at the base pair level but also incorporate large-scale genomic context to simultaneously capture the large scale and intricate structures of chromatin architecture. Similarly, to be a flexible and generalisable approach it should also be applicable to data it has not been explicitly trained on. To develop a model with these properties, we designed a deep neuronal network (deepC) that utilizes transfer learning to accurately predict chromatin interactions from DNA sequence at megabase scale. The model generalizes well to unseen chromosomes and works across cell types, Hi-C data resolutions and a range of sequencing depths. DeepC integrates DNA sequence context on an unprecedented scale, bridging the different levels of resolution from base pairs to TADs. We demonstrate how this model allows us to investigate sequence determinants of chromatin folding at genome-wide scale and to predict the importance of regulatory elements and the impact of sequence variations.


2020 ◽  
Author(s):  
Richard J Edwards ◽  
Matt A. Field ◽  
James M. Ferguson ◽  
Olga Dudchenko ◽  
Jens Keilwagen ◽  
...  

Abstract Background Basenjis are considered an ancient dog breed of central African origins that still live and hunt with tribesmen in the African Congo. Nicknamed the barkless dog, Basenjis possess unique phylogeny, geographical origins and traits, making their genome structure of great interest. The increasing number of available canid reference genomes allows us to examine the impact the choice of reference genome makes with regard to reference genome quality and breed relatedness. Results Here, we report two high quality de novo Basenji genome assemblies: a female, China (CanFam_Bas), and a male, Wags. We conduct pairwise comparisons and report structural variations between assembled genomes of three dog breeds: Basenji (CanFam_Bas), Boxer (CanFam3.1) and German Shepherd Dog (GSD) (CanFam_GSD). CanFam_Bas is superior to CanFam3.1 in terms of genome contiguity and comparable overall to the high quality CanFam_GSD assembly. By aligning short read data from 58 representative dog breeds to three reference genomes, we demonstrate how the choice of reference genome significantly impacts both read mapping and variant detection. Conclusions The growing number of high-quality canid reference genomes means the choice of reference genome is an increasingly critical decision in subsequent canid variant analyses. The basal position of the Basenji makes it suitable for variant analysis for targeted applications of specific dog breeds. However, we believe more comprehensive analyses across the entire family of canids is more suited to a pangenome approach. Collectively this work highlights the importance the choice of reference genome makes in all variation studies.


2019 ◽  
Author(s):  
Jacob T. Sanders ◽  
Trevor F. Freeman ◽  
Yang Xu ◽  
Rosela Golloshi ◽  
Mary A. Stallard ◽  
...  

ABSTRACTThe three-dimensional structure of chromosomes plays an important role in gene expression regulation and also influences the repair of radiation-induced DNA damage. Genomic aberrations that disrupt chromosome spatial domains can lead to diseases including cancer, but how the 3D genome structure responds to DNA damage is poorly understood. Here, we investigate the impact of DNA damage response and repair on 3D genome folding using Hi-C experiments on wild type cells and ataxia telangiectasia mutated (ATM) patient cells. Fibroblasts, lymphoblasts, and ATM-deficient fibroblasts were irradiated with 5 Gy X-rays and Hi-C was performed after 30 minutes, 24 hours, or 5 days after irradiation. 3D genome changes after irradiation were cell type-specific, with lymphoblastoid cells generally showing more contact changes than irradiated fibroblasts. However, all tested repair-proficient cell types exhibited an increased segregation of topologically associating domains (TADs). This TAD boundary strengthening after irradiation was not observed in ATM deficient fibroblasts and may indicate the presence of a mechanism to protect 3D genome structure integrity during DNA damage repair.


Author(s):  
Richard J. Edwards ◽  
Matt A. Field ◽  
James M. Ferguson ◽  
Olga Dudchenko ◽  
Jens Keilwagen ◽  
...  

AbstractBackgroundBasenjis are considered an ancient dog breed of central African origins that still live and hunt with tribesmen in the African Congo. Nicknamed the barkless dog, Basenjis possess unique phylogeny, geographical origins and traits, making their genome structure of great interest. The increasing number of available canid reference genomes allows us to examine the impact the choice of reference genome makes with regard to reference genome quality and breed relatedness.ResultsHere, we report two high quality de novo Basenji genome assemblies: a female, China (CanFam_Bas), and a male, Wags. We conduct pairwise comparisons and report structural variations between assembled genomes of three dog breeds: Basenji (CanFam_Bas), Boxer (CanFam3.1) and German Shepherd Dog (GSD) (CanFam_GSD). CanFam_Bas is superior to CanFam3.1 in terms of genome contiguity and comparable overall to the high quality CanFam_GSD assembly. By aligning short read data from 58 representative dog breeds to three reference genomes, we demonstrate how the choice of reference genome significantly impacts both read mapping and variant detection.ConclusionsThe growing number of high-quality canid reference genomes means the choice of reference genome is an increasingly critical decision in subsequent canid variant analyses. The basal position of the Basenji makes it suitable for variant analysis for targeted applications of specific dog breeds. However, we believe more comprehensive analyses across the entire family of canids is more suited to a pangenome approach. Collectively this work highlights the importance the choice of reference genome makes in all variation studies.


2020 ◽  
Author(s):  
Diana Buitrago ◽  
Mireia Labrador ◽  
Juan Pablo Arcon ◽  
Rafael Lema ◽  
Oscar Flores ◽  
...  

Abstract The extreme complexity of epigenetic regulation in higher organisms makes the determination of the intrinsic effect of DNA methylation in chromatin structure and function challenging. We investigated the role of DNA methylation in a simpler model system, budding yeast (Saccharomyces cerevisiae), an organism in which methylation-related machinery is normally absent thus making it a perfect model system to study the intrinsic role of methylation in chromatin structure and function. With this aim, we expressed the murine DNA Methyl Transferases in S. cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. We showed that despite the lack of machinery for positioning and reading of methylation marks, the methylation pattern follows a conserved pattern, the level of DNA methylation being very low at the 5’ end of the gene, and then increasing gradually toward the 3’ end, mimicking mammalian behavior. DNA methylation and gene expression correlate as DNA methylation is lower at the TSS and higher at the TTS in highly expressed genes compared to lowly expressed ones, mimicking again mammalian behavior. We found that methylated DNA is unlikely to be wrapped around nucleosomes, but is concentrated in linkers and nucleosome free regions. DNA methylation increases chromatin condensation in the peri-centromeric region, decreases overall DNA flexibility and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal.


Sign in / Sign up

Export Citation Format

Share Document