scholarly journals Machine-learning-based predictions of caloric restriction associations across ageing-related genes

2021 ◽  
Author(s):  
Gustavo Daniel Vega-Magdaleno ◽  
Vladislav Bespalov ◽  
Yalin Zheng ◽  
Alex Freitas ◽  
Joao Pedro de Magalhaes

Caloric restriction (CR) is the most studied pro-longevity intervention; however, a complete understanding of its underlying mechanisms remains elusive, and new research directions may emerge from the identification of novel CR-related genes and CR-related genetic features. This work used a Machine Learning (ML) approach to classify ageing-related genes as CR-related or NotCR-related using 9 different types of predictive features: PathDIP pathways, two types of features based on KEGG pathways, two types of Protein-Protein Interactions (PPI) features, Gene Ontology (GO) terms, Genotype-Tissue Expression (GTEx) expression features, GeneFriends co-expression features and protein sequence descriptors. Our findings suggested that features biased towards curated knowledge (i.e. GO terms and biological pathways) have the greatest predictive power while unbiased features (mainly gene expression and co-expression data) have the least predictive power. Moreover, a combination of all the feature types diminished the predictive power compared to predictions based on curated knowledge. Feature importance analysis on the two most predictive classifiers mostly corroborated existing knowledge and supported recent findings linking CR to the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) signalling pathway and G protein-coupled receptors (GPCR). We then used the two strongest combinations of feature type and ML algorithm to predict CR-relatedness among ageing-related genes currently lacking CR-related annotations in the data, resulting in a set of promising candidate CR-related genes (GOT2, GOT1, TSC1, CTH, GCLM, IRS2 and SESN2) whose predicted CR-relatedness remain to be validated in future wet-lab experiments.

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Gustavo Daniel Vega Magdaleno ◽  
Vladislav Bespalov ◽  
Yalin Zheng ◽  
Alex A. Freitas ◽  
Joao Pedro de Magalhaes

Abstract Background Dietary restriction (DR) is the most studied pro-longevity intervention; however, a complete understanding of its underlying mechanisms remains elusive, and new research directions may emerge from the identification of novel DR-related genes and DR-related genetic features. Results This work used a Machine Learning (ML) approach to classify ageing-related genes as DR-related or NotDR-related using 9 different types of predictive features: PathDIP pathways, two types of features based on KEGG pathways, two types of Protein–Protein Interactions (PPI) features, Gene Ontology (GO) terms, Genotype Tissue Expression (GTEx) expression features, GeneFriends co-expression features and protein sequence descriptors. Our findings suggested that features biased towards curated knowledge (i.e. GO terms and biological pathways), had the greatest predictive power, while unbiased features (mainly gene expression and co-expression data) have the least predictive power. Moreover, a combination of all the feature types diminished the predictive power compared to predictions based on curated knowledge. Feature importance analysis on the two most predictive classifiers mostly corroborated existing knowledge and supported recent findings linking DR to the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) signalling pathway and G protein-coupled receptors (GPCR). We then used the two strongest combinations of feature type and ML algorithm to predict DR-relatedness among ageing-related genes currently lacking DR-related annotations in the data, resulting in a set of promising candidate DR-related genes (GOT2, GOT1, TSC1, CTH, GCLM, IRS2 and SESN2) whose predicted DR-relatedness remain to be validated in future wet-lab experiments. Conclusions This work demonstrated the strong potential of ML-based techniques to identify DR-associated features as our findings are consistent with literature and recent discoveries. Although the inference of new DR-related mechanistic findings based solely on GO terms and biological pathways was limited due to their knowledge-driven nature, the predictive power of these two features types remained useful as it allowed inferring new promising candidate DR-related genes.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Meisam Ghasedi ◽  
Maryam Sarfjoo ◽  
Iraj Bargegol

AbstractThe purpose of this study is to investigate and determine the factors affecting vehicle and pedestrian accidents taking place in the busiest suburban highway of Guilan Province located in the north of Iran and provide the most accurate prediction model. Therefore, the effective principal variables and the probability of occurrence of each category of crashes are analyzed and computed utilizing the factor analysis, logit, and Machine Learning approaches simultaneously. This method not only could contribute to achieving the most comprehensive and efficient model to specify the major contributing factor, but also it can provide officials with suggestions to take effective measures with higher precision to lessen accident impacts and improve road safety. Both the factor analysis and logit model show the significant roles of exceeding lawful speed, rainy weather and driver age (30–50) variables in the severity of vehicle accidents. On the other hand, the rainy weather and lighting condition variables as the most contributing factors in pedestrian accidents severity, underline the dominant role of environmental factors in the severity of all vehicle-pedestrian accidents. Moreover, considering both utilized methods, the machine-learning model has higher predictive power in all cases, especially in pedestrian accidents, with 41.6% increase in the predictive power of fatal accidents and 12.4% in whole accidents. Thus, the Artificial Neural Network model is chosen as the superior approach in predicting the number and severity of crashes. Besides, the good performance and validation of the machine learning is proved through performance and sensitivity analysis.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4776
Author(s):  
Seyed Mahdi Miraftabzadeh ◽  
Michela Longo ◽  
Federica Foiadelli ◽  
Marco Pasetti ◽  
Raul Igual

The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models.


Author(s):  
Chen-Chih Chung ◽  
Oluwaseun Adebayo Bamodu ◽  
Chien-Tai Hong ◽  
Lung Chan ◽  
Hung-Wen Chiu

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1620.1-1621
Author(s):  
J. Lee ◽  
H. Kim ◽  
S. Y. Kang ◽  
S. Lee ◽  
Y. H. Eun ◽  
...  

Background:Tumor necrosis factor (TNF) inhibitors are important drugs in treating patients with ankylosing spondylitis (AS). However, they are not used as a first-line treatment for AS. There is an insufficient treatment response to the first-line treatment, non-steroidal anti-inflammatory drugs (NSAIDs), in over 40% of patients. If we can predict who will need TNF inhibitors at an earlier phase, adequate treatment can be provided at an appropriate time and potential damages can be avoided. There is no precise predictive model at present. Recently, various machine learning methods show great performances in predictions using clinical data.Objectives:We aim to generate an artificial neural network (ANN) model to predict early TNF inhibitor users in patients with ankylosing spondylitis.Methods:The baseline demographic and laboratory data of patients who visited Samsung Medical Center rheumatology clinic from Dec. 2003 to Sep. 2018 were analyzed. Patients were divided into two groups: early TNF inhibitor users treated by TNF inhibitors within six months of their follow-up (early-TNF users), and the others (non-early-TNF users). Machine learning models were formulated to predict the early-TNF users using the baseline data. Additionally, feature importance analysis was performed to delineate significant baseline characteristics.Results:The numbers of early-TNF and non-early-TNF users were 90 and 509, respectively. The best performing ANN model utilized 3 hidden layers with 50 hidden nodes each; its performance (area under curve (AUC) = 0.75) was superior to logistic regression model, support vector machine, and random forest model (AUC = 0.72, 0.65, and 0.71, respectively) in predicting early-TNF users. Feature importance analysis revealed erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and height as the top significant baseline characteristics for predicting early-TNF users. Among these characteristics, height was revealed by machine learning models but not by conventional statistical techniques.Conclusion:Our model displayed superior performance in predicting early TNF users compared with logistic regression and other machine learning models. Machine learning can be a vital tool in predicting treatment response in various rheumatologic diseases.Disclosure of Interests:None declared


2020 ◽  
Vol 48 (10) ◽  
pp. 030006052095880
Author(s):  
Jianping Wu ◽  
Sulai Liu ◽  
Xiaoming Chen ◽  
Hongfei Xu ◽  
Yaoping Tang

Objective Colorectal cancer (CRC) is the most common cancer worldwide. Patient outcomes following recurrence of CRC are very poor. Therefore, identifying the risk of CRC recurrence at an early stage would improve patient care. Accumulating evidence shows that autophagy plays an active role in tumorigenesis, recurrence, and metastasis. Methods We used machine learning algorithms and two regression models, univariable Cox proportion and least absolute shrinkage and selection operator (LASSO), to identify 26 autophagy-related genes (ARGs) related to CRC recurrence. Results By functional annotation, these ARGs were shown to be enriched in necroptosis and apoptosis pathways. Protein–protein interactions identified SQSTM1, CASP8, HSP80AB1, FADD, and MAPK9 as core genes in CRC autophagy. Of 26 ARGs, BAX and PARP1 were regarded as having the most significant predictive ability of CRC recurrence, with prediction accuracy of 71.1%. Conclusion These results shed light on prediction of CRC recurrence by ARGs. Stratification of patients into recurrence risk groups by testing ARGs would be a valuable tool for early detection of CRC recurrence.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Hudson Fernandes Golino ◽  
Liliany Souza de Brito Amaral ◽  
Stenio Fernando Pimentel Duarte ◽  
Cristiano Mauro Assis Gomes ◽  
Telma de Jesus Soares ◽  
...  

The present study investigates the prediction of increased blood pressure by body mass index (BMI), waist (WC) and hip circumference (HC), and waist hip ratio (WHR) using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women) from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42), misclassification (.19), and the higher pseudoR2(.43). This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25), misclassification (.16), and the higher pseudoR2(.46). This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power.


2017 ◽  
Vol 79 (02) ◽  
pp. 123-130 ◽  
Author(s):  
Whitney Muhlestein ◽  
Dallin Akagi ◽  
Justiss Kallos ◽  
Peter Morone ◽  
Kyle Weaver ◽  
...  

Objective Machine learning (ML) algorithms are powerful tools for predicting patient outcomes. This study pilots a novel approach to algorithm selection and model creation using prediction of discharge disposition following meningioma resection as a proof of concept. Materials and Methods A diversity of ML algorithms were trained on a single-institution database of meningioma patients to predict discharge disposition. Algorithms were ranked by predictive power and top performers were combined to create an ensemble model. The final ensemble was internally validated on never-before-seen data to demonstrate generalizability. The predictive power of the ensemble was compared with a logistic regression. Further analyses were performed to identify how important variables impact the ensemble. Results Our ensemble model predicted disposition significantly better than a logistic regression (area under the curve of 0.78 and 0.71, respectively, p = 0.01). Tumor size, presentation at the emergency department, body mass index, convexity location, and preoperative motor deficit most strongly influence the model, though the independent impact of individual variables is nuanced. Conclusion Using a novel ML technique, we built a guided ML ensemble model that predicts discharge destination following meningioma resection with greater predictive power than a logistic regression, and that provides greater clinical insight than a univariate analysis. These techniques can be extended to predict many other patient outcomes of interest.


Sign in / Sign up

Export Citation Format

Share Document