scholarly journals Csp1, A Cold-Shock Protein Homolog in Xylella fastidiosa Influences Pili Formation, Stress Response, and Gene Expression

2021 ◽  
Author(s):  
Wei Wei ◽  
Lindsey Price Burbank ◽  
Teresa Sawyer

Bacterial cold shock-domain proteins (CSPs) are conserved nucleic acid binding chaperones that play important roles in stress adaptation and pathogenesis. Csp1 is a temperature-independent cold shock protein homolog in Xylella fastidiosa, a bacterial plant pathogen of grapevine and other economically important crops. Csp1 contributes to stress tolerance and virulence in X. fastidiosa. However, besides general single stranded nucleic acid binding activity, little is known about the specific function(s) of this protein. To further investigate the role(s) of Csp1, we compared phenotypic differences between wild type and a csp1 deletion mutant (Δcsp1). We observed decreases in cellular aggregation and surface attachment with the Δcsp1 strain compared to the wild type. Transmission electron microscopy imaging revealed that Δcsp1 had reduced pili compared to the wild type and complemented strains. The Δcsp1 strain also showed reduced survival after long term growth, in vitro. Since Csp1 binds DNA and RNA, its influence on gene expression was also investigated. Long-read Nanopore RNA-Seq analysis of wild type and Δcsp1 revealed changes in expression of several genes important for attachment and biofilm formation in Δcsp1. One gene of intertest,pilA1, encodes a type IV pili subunit protein and was up regulated in Δcsp1. Deleting pilA1 increased surface attachment in vitro and reduced virulence in grapevines.X. fastidiosa virulence depends on bacterial attachment to host tissue and movement within and between xylem vessels. Our results show Csp1 may play a role in both virulence and stress tolerance by influencing expression of genes important for biofilm formation.

2016 ◽  
Vol 29 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Lindsey P. Burbank ◽  
Drake C. Stenger

Xylella fastidiosa, causal agent of Pierce’s disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid–binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag’s Leap. The csp1 gene lacked the long 5′ untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.


2004 ◽  
Vol 237 (2) ◽  
pp. 341-353 ◽  
Author(s):  
Alessandra A. Souza ◽  
Marco A. Takita ◽  
Helvécio D. Coletta-Filho ◽  
Camila Caldana ◽  
Giane M. Yanai ◽  
...  

Author(s):  
Wei Wei ◽  
Teresa Sawyer ◽  
Lindsey Burbank

Xylella fastidiosa is a major threat to the worldwide agriculture industry (1, 2). Despite its global importance, many aspects of X. fastidiosa biology and pathogenicity are poorly understood.


2010 ◽  
Vol 23 (10) ◽  
pp. 1356-1363 ◽  
Author(s):  
Subhadeep Chatterjee ◽  
Nabil Killiny ◽  
Rodrigo P. P. Almeida ◽  
Steven E. Lindow

Xylella fastidiosa must coordinately regulate a variety of traits contributing to biofilm formation, host plant and vector colonization, and transmission between plants. Traits such as production of extracellular polysaccharides (EPS), adhesins, extracellular enzymes, and pili are expressed in a cell-density-dependent fashion mediated by a cell-to-cell signaling system involving a fatty acid diffusible signaling factor (DSF). The expression of gene PD0279 (which has a GGDEF domain) is downregulated in the presence of DSF and may be involved in intracellular signaling by modulating the levels of cyclic di-GMP. PD0279, designated cyclic di-GMP synthase A (cgsA), is required for biofilm formation, plant virulence, and vector transmission. cgsA mutants exhibited a hyperadhesive phenotype in vitro and overexpressed gumJ, hxfA, hxfB, xadA, and fimA, which promote attachment of cells to surfaces and, hence, biofilm formation. The mutants were greatly reduced in virulence to grape albeit still transmissible by insect vectors, although at a reduced level compared with transmission rates of the wild-type strain, despite the fact that similar numbers of cells of the cgsA mutant were acquired by the insects from infected plants. High levels of EPS were measured in cgsA mutants compared with wild-type strains, and scanning electron microscopy analysis also revealed a thicker amorphous layer surrounding the mutants. Overexpression of cgsA in a cgsA-complemented mutant conferred the opposite phenotypes in vitro. These results suggest that decreases of cyclic di-GMP result from the accumulation of DSF as cell density increases, leading to a phenotypic transition from a planktonic state capable of colonizing host plants to an adhesive state that is insect transmissible.


Nature ◽  
1993 ◽  
Vol 364 (6433) ◽  
pp. 164-168 ◽  
Author(s):  
Hermann Schindelin ◽  
Mohamed A. Marahiel ◽  
Udo Heinemann

2013 ◽  
Vol 26 (9) ◽  
pp. 1044-1053 ◽  
Author(s):  
N. Killiny ◽  
R. Hernandez Martinez ◽  
C. Korsi Dumenyo ◽  
D. A. Cooksey ◽  
R. P. P. Almeida

Exopolysaccharides (EPS) synthesized by plant-pathogenic bacteria are generally essential for virulence. The role of EPS produced by the vector-transmitted bacterium Xylella fastidiosa was investigated by knocking out two genes implicated in the EPS biosynthesis, gumD and gumH. Mutant strains were affected in growth characteristics in vitro, including adhesion to surfaces and biofilm formation. In addition, different assays were used to demonstrate that the mutant strains produced significantly less EPS compared with the wild type. Furthermore, gas chromatography–mass spectrometry showed that both mutant strains did not produce oligosaccharides. Biologically, the mutants were deficient in movement within plants, resulting in an avirulent phenotype. Additionally, mutant strains were affected in transmission by insects: they were very poorly transmitted by and retained within vectors. The gene expression profile indicated upregulation of genes implicated in cell-to-cell signaling and adhesins while downregulation in genes was required for within-plant movement in EPS-deficient strains. These results suggest an essential role for EPS in X. fastidiosa interactions with both plants and insects.


2005 ◽  
Vol 25 (5) ◽  
pp. 1779-1792 ◽  
Author(s):  
Ken Matsumoto ◽  
Kimio J. Tanaka ◽  
Masafumi Tsujimoto

ABSTRACT Eukaryotic Y-box proteins are nucleic acid-binding proteins implicated in a wide range of gene regulatory mechanisms. They contain the cold shock domain, which is a nucleic acid-binding structure also found in bacterial cold shock proteins. The Y-box protein YB-1 is known to be a core component of messenger ribonucleoprotein particles (mRNPs) in the cytoplasm. Here we disrupted the YB-1 gene in chicken DT40 cells. Through the immunoprecipitation of an epitope-tagged YB-1 protein, which complemented the slow-growth phenotype of YB-1-depleted cells, we isolated YB-1-associated complexes that likely represented general mRNPs in somatic cells. RNase treatment prior to immunoprecipitation led to the identification of a Y-box protein-associated acidic protein (YBAP1). The specific association of YB-1 with YBAP1 resulted in the release of YB-1 from reconstituted YB-1-mRNA complexes, thereby reducing the translational repression caused by YB-1 in the in vitro system. Our data suggest that YBAP1 induces the remodeling of YB-1-mRNA complexes.


2011 ◽  
Vol 80 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Chen Li ◽  
Kurniyati ◽  
Bo Hu ◽  
Jiang Bian ◽  
Jianlan Sun ◽  
...  

ABSTRACTThe oral bacteriumPorphyromonas gingivalisis a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide.P. gingivalisexhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence ofP. gingivalisremain elusive. In this report, we found thatP. gingivalisencodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed thatPG0352is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPgis an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that thePG0352deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type,in vitrostudies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement.In vivostudies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPgis an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity ofP. gingivalis, and it can potentially serve as a new target for developing therapeutic agents againstP. gingivalisinfection.


2020 ◽  
Author(s):  
Joanna Houghton ◽  
Angela Rodgers ◽  
Graham Rose ◽  
Kristine B. Arnvig

ABSTRACTAlmost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of post-transcriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA, F6, and show it to be dependent on SigF for expression and significantly induced during in vitro starvation and in a mouse model of infection. However, we found no evidence of attenuation of a ΔF6 strain within the first 20 weeks of infection. A further exploration of F6 using in vitro models of infection suggests a role for F6 as a highly specific regulator of the heat shock repressor, HrcA. Our results point towards a role for F6 during periods of low metabolic activity similar to cold shock and associated with nutrient starvation such as that found in human granulomas in later stages of infection.


Sign in / Sign up

Export Citation Format

Share Document