scholarly journals Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction

2021 ◽  
Author(s):  
Alex Cornean ◽  
Jakob Gierten ◽  
Bettina Welz ◽  
Juan Luis Mateo ◽  
Thomas Thumberger ◽  
...  

Single nucleotide variants (SNVs) are prevalent genetic factors shaping individual trait profiles and disease susceptibility. The recent development and optimizations of base editors, rubber and pencil genome editing tools now promise to enable direct functional assessment of SNVs in model organisms. However, the lack of bioinformatic tools aiding target prediction limits the application of base editing in vivo>. Here, we provide a framework for adenine and cytosine base editing in medaka (Oryzias latipes) and zebrafish (Danio rerio), ideal for scalable validation studies. We developed an online base editing tool ACEofBASEs (a careful evaluation of base-edits), to facilitate decision-making by streamlining sgRNA design and performing off-target evaluation. We used state-of-the-art adenine (ABE) and cytosine base editors (CBE) in medaka and zebrafish to edit eye pigmentation genes and transgenic GFP function with high efficiencies. Base editing in the genes encoding troponin T and the potassium channel ERG faithfully recreated known cardiac phenotypes. We finally validated missense mutations in novel candidate genes of congenital heart disease (CHD) dapk3, ube2b, usp44, and ptpn11 and present the resulting heart specific phenotypes. This base editing framework applies to a wide range of SNV-susceptible traits accessible in fish, facilitating straight-forward candidate validation and prioritization for detailed mechanistic downstream studies.

2018 ◽  
Author(s):  
Maria Paz Zafra ◽  
Emma M Schatoff ◽  
Alyna Katti ◽  
Miguel Foronda ◽  
Marco Breinig ◽  
...  

AbstractCRISPR base editing is a potentially powerful technology that enables the creation of genetic mutations with single base pair resolution. By re-engineering both DNA and protein sequences, we developed a collection of constitutive and inducible base editing vector systems that dramatically improve the ease and efficiency by which single nucleotide variants can be created. This new toolkit is effective in a wide range of model systems, and provides a means for efficientin vivosomatic base editing.


2020 ◽  
Author(s):  
Maria C. Sterrett ◽  
Liz Enyenihi ◽  
Sara W. Leung ◽  
Laurie Hess ◽  
Sarah E. Strassler ◽  
...  

AbstractRNA exosomopathies, a growing family of tissue-specific diseases, are linked to missense mutations in genes encoding the structural subunits of the conserved 10-subunit exoribonuclease complex, the RNA exosome. Such mutations in the cap subunit gene EXOSC2 cause the novel syndrome SHRF (Short stature, Hearing loss, Retinitis pigmentosa and distinctive Facies). In contrast, exosomopathy mutations in the cap subunit gene EXOSC3 cause pontocerebellar hypoplasia type 1b (PCH1b). Though having strikingly different disease pathologies, EXOSC2 and EXOSC3 exosomopathy mutations result in amino acid substitutions in similar, conserved domains of the cap subunits, suggesting that these exosomopathy mutations have distinct consequences for RNA exosome function. We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by introducing the EXOSC2 mutations in the orthologous S. cerevisiae gene RRP4. The resulting rrp4 mutant cells have defects in cell growth and RNA exosome function. We detect significant transcriptomic changes in both coding and non-coding RNAs in the rrp4 variant, rrp4-G226D, which models EXOSC2 p.Gly198Asp. Comparing this rrp4-G226D mutant to the previously studied S. cerevisiae model of EXOSC3 PCH1b mutation, rrp40-W195R, reveals that these mutants have disparate effects on certain RNA targets, providing the first evidence for different mechanistic consequences of these exosomopathy mutations. Congruently, we detect specific negative genetic interactions between RNA exosome cofactor mutants and rrp4-G226D but not rrp40-W195R. These data provide insight into how SHRF mutations could alter the function of the RNA exosome and allow the first direct comparison of exosomopathy mutations that cause distinct pathologies.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hye Kyung Lee ◽  
Harold E. Smith ◽  
Chengyu Liu ◽  
Michaela Willi ◽  
Lothar Hennighausen

AbstractDeaminase base editing has emerged as a tool to install or correct point mutations in the genomes of living cells in a wide range of organisms. However, the genome-wide off-target effects introduced by base editors in the mammalian genome have been examined in only one study. Here, we have investigated the fidelity of cytosine base editor 4 (BE4) and adenine base editors (ABE) in mouse embryos using unbiased whole-genome sequencing of a family-based trio cohort. The same sgRNA was used for BE4 and ABE. We demonstrate that BE4-edited mice carry an excess of single-nucleotide variants and deletions compared to ABE-edited mice and controls. Therefore, an optimization of cytosine base editors is required to improve its fidelity. While the remarkable fidelity of ABE has implications for a wide range of applications, the occurrence of rare aberrant C-to-T conversions at specific target sites needs to be addressed.


2008 ◽  
Vol 67 (1) ◽  
pp. 60-74 ◽  
Author(s):  
Kateřina Kaňková

Complex chemical processes termed non-enzymic glycation that operate in vivo and similar chemical interactions between sugars and proteins that occur during thermal processing of food (known as the Maillard reaction) are one of the interesting examples of a potentially-harmful interaction between nutrition and disease. Non-enzymic glycation comprises a series of reactions between sugars, α-oxoaldehydes and other sugar derivatives and amino groups of amino acids, peptides and proteins leading to the formation of heterogeneous moieties collectively termed advanced glycation end products (AGE). AGE possess a wide range of chemical and biological properties and play a role in diabetes-related pathology as well as in several other diseases. Diabetes is, nevertheless, of particular interest for several reasons: (1) chronic hyperglycaemia provides the substrates for extracellular glycation as well as intracellular glycation; (2) hyperglycaemia-induced oxidative stress accelerates AGE formation in the process of glycoxidation; (3) AGE-modified proteins are subject to rapid intracellular proteolytic degradation releasing free AGE adducts into the circulation where they can bind to several pro-inflammatory receptors, especially receptor of AGE; (4) kidneys, which are principally involved in the excretion of free AGE adducts, might be damaged by diabetic nephropathy, which further enhances AGE toxicity because of diminished AGE clearance. Increased dietary intake of AGE in highly-processed foods may represent an additional exogenous metabolic burden in addition to AGE already present endogenously in subjects with diabetes. Finally, inter-individual genetic and functional variability in genes encoding enzymes and receptors involved in either the formation or the degradation of AGE could have important pathogenic, nutrigenomic and nutrigenetic consequences.


Science ◽  
2019 ◽  
pp. eaaw7166 ◽  
Author(s):  
Shuai Jin ◽  
Yuan Zong ◽  
Qiang Gao ◽  
Zixu Zhu ◽  
Yanpeng Wang ◽  
...  

Cytosine and adenine base editors (CBEs and ABEs) are promising new tools for achieving the precise genetic changes required for disease treatment and trait improvement. However, genome-wide and unbiased analyses of their off-target effects in vivo are still lacking. Our whole genome sequencing (WGS) analysis of rice plants treated with BE3, high-fidelity BE3 (HF1-BE3), or ABE revealed that BE3 and HF1-BE3, but not ABE, induce substantial genome-wide off-target mutations, which are mostly the C→T type of single nucleotide variants (SNVs) and appear to be enriched in genic regions. Notably, treatment of rice with BE3 or HF1-BE3 in the absence of single-guide RNA also results in the rise of genome-wide SNVs. Thus, the base editing unit of BE3 or HF1-BE3 needs to be optimized in order to attain high fidelity.


2019 ◽  
Author(s):  
Hye Kyung Lee ◽  
Harold E. Smith ◽  
Chengyu Liu ◽  
Michaela Willi ◽  
Lothar Hennighausen

ABSTRACTDeaminase base editing has emerged as a tool to install or correct point mutations in the genomes of living cells in a wide range of organisms and its ultimate success therapeutically depends on its accuracy. Here we have investigated the fidelity of cytosine base editor 4 (BE4) and adenine base editor (ABE) in mouse embryos using unbiased whole genome sequencing of a family-based trio cohort. We demonstrate that BE4-edited mice carry an excess of single-nucleotide variants and deletions compared to ABE-edited mice and controls.


1998 ◽  
Vol 62 (3) ◽  
pp. 667-683 ◽  
Author(s):  
Douglas Campbell ◽  
Vaughan Hurry ◽  
Adrian K. Clarke ◽  
Petter Gustafsson ◽  
Gunnar Öquist

SUMMARY Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity.


2020 ◽  
Vol 117 (44) ◽  
pp. 27354-27364 ◽  
Author(s):  
Siddhant U. Jain ◽  
Sima Khazaei ◽  
Dylan M. Marchione ◽  
Stefan M. Lundgren ◽  
Xiaoshi Wang ◽  
...  

A high percentage of pediatric gliomas and bone tumors reportedly harbor missense mutations at glycine 34 in genes encoding histone variant H3.3. We find that these H3.3 G34 mutations directly alter the enhancer chromatin landscape of mesenchymal stem cells by impeding methylation at lysine 36 on histone H3 (H3K36) by SETD2, but not by the NSD1/2 enzymes. The reduction of H3K36 methylation by G34 mutations promotes an aberrant gain of PRC2-mediated H3K27me2/3 and loss of H3K27ac at active enhancers containing SETD2 activity. This altered histone modification profile promotes a unique gene expression profile that supports enhanced tumor development in vivo. Our findings are mirrored in G34W-containing giant cell tumors of bone where patient-derived stromal cells exhibit gene expression profiles associated with early osteoblastic differentiation. Overall, we demonstrate that H3.3 G34 oncohistones selectively promote PRC2 activity by interfering with SETD2-mediated H3K36 methylation. We propose that PRC2-mediated silencing of enhancers involved in cell differentiation represents a potential mechanism by which H3.3 G34 mutations drive these tumors.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1392
Author(s):  
Himel Nahreen Khaleque ◽  
Homayoun Fathollazadeh ◽  
Carolina González ◽  
Raihan Shafique ◽  
Anna H. Kaksonen ◽  
...  

Microorganisms used for the biohydrometallurgical extraction of metals from minerals must be able to survive high levels of metal and oxidative stress found in bioleaching environments. The Acidihalobacter genus consists of four species of halotolerant, iron–sulfur-oxidizing acidophiles that are unique in their ability to tolerate chloride and acid stress while simultaneously bioleaching minerals. This paper uses bioinformatic tools to predict the genes and mechanisms used by Acidihalobacter members in their defense against a wide range of metals and oxidative stress. Analysis revealed the presence of multiple conserved mechanisms of metal tolerance. Ac. yilgarnensis F5T, the only member of this genus that oxidizes the mineral chalcopyrite, contained a 39.9 Kb gene cluster consisting of 40 genes encoding mobile elements and an array of proteins with direct functions in copper resistance. The analysis also revealed multiple strategies that the Acidihalobacter members can use to tolerate high levels of oxidative stress. Three of the Acidihalobacter genomes were found to contain genes encoding catalases, which are not common to acidophilic microorganisms. Of particular interest was a rubrerythrin genomic cluster containing genes that have a polyphyletic origin of stress-related functions.


2017 ◽  
Vol 29 (3) ◽  
pp. 949-960 ◽  
Author(s):  
Steven D. Funk ◽  
Raymond H. Bayer ◽  
Andrew F. Malone ◽  
Karen K. McKee ◽  
Peter D. Yurchenco ◽  
...  

Pierson syndrome is a congenital nephrotic syndrome with eye and neurologic defects caused by mutations in laminin β2 (LAMB2), a major component of the glomerular basement membrane (GBM). Pathogenic missense mutations in human LAMB2 cluster in or near the laminin amino-terminal (LN) domain, a domain required for extracellular polymerization of laminin trimers and basement membrane scaffolding. Here, we investigated an LN domain missense mutation, LAMB2-S80R, which was discovered in a patient with Pierson syndrome and unusually late onset of proteinuria. Biochemical data indicated that this mutation impairs laminin polymerization, which we hypothesized to be the cause of the patient’s nephrotic syndrome. Testing this hypothesis in genetically altered mice showed that the corresponding amino acid change (LAMB2-S83R) alone is not pathogenic. However, expression of LAMB2-S83R significantly increased the rate of progression to kidney failure in a Col4a3−/− mouse model of autosomal recessive Alport syndrome and increased proteinuria in Col4a5+/− females that exhibit a mild form of X-linked Alport syndrome due to mosaic deposition of collagen α3α4α5(IV) in the GBM. Collectively, these data show the pathogenicity of LAMB2-S80R and provide the first evidence of genetic modification of Alport phenotypes by variation in another GBM component. This finding could help explain the wide range of Alport syndrome onset and severity observed in patients with Alport syndrome, even for family members who share the same COL4 mutation. Our results also show the complexities of using model organisms to investigate genetic variants suspected of being pathogenic in humans.


Sign in / Sign up

Export Citation Format

Share Document