scholarly journals A phospho-switch at Acinus-Serine437 controls autophagic responses to cadmium exposure and neurodegenerative stress

2021 ◽  
Author(s):  
Nilay Nandi ◽  
Zuhair Zaidi ◽  
Charles Tracy ◽  
Helmut Krämer

Neuronal health depends on quality control functions of autophagy, but mechanisms regulating neuronal autophagy are poorly understood. Previously, we showed that in Drosophila starvation-independent quality control autophagy is regulated by Acinus and the Cdk5-dependent phosphorylation of its serine437 (Nandi et al., 2017). Here, we identify the phosphatase that counterbalances this activity and provides for the dynamic nature of Acinus-S437 phosphorylation. A genetic screen identified six phosphatases that genetically interacted with an Acinus gain-of-function model. Among these, loss of function of only one, the PPM-type phosphatase Nil (CG6036), enhanced pS437-Acinus levels. Cdk5-dependent phosphorylation of Acinus serine437 in nil1 animals elevates neuronal autophagy and reduces the accumulation of polyQ proteins in a Drosophila Huntington's disease model. Consistent with previous findings that Cd2+ inhibits PPM-type phosphatases, Cd2+-exposure elevated Acinus-serine437 phosphorylation which was necessary for increased neuronal autophagy and protection against Cd2+-induced cytotoxicity. Together, our data establish the Acinus-S437 phospho-switch as critical integrator of multiple stress signals regulating neuronal autophagy.

2021 ◽  
Author(s):  
Wei Kong ◽  
Shutang Tan ◽  
Qing Zhao ◽  
De-Li Lin ◽  
Zhi-Hong Xu ◽  
...  

Abstract The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3’-Phosphoinositide-Dependent Protein Kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.2 in Arabidopsis thaliana. Notably, the severe growth attenuation of pdk1.1 pdk1.2 was rescued by sop21 (suppressor of pdk1.1 pdk1.2), which harbours a loss-of-function mutation in PELOTA1 (PEL1). PEL1 is a homologue of mammalian PELOTA and yeast (Saccharomyces cerevisiae) DOM34p, which each form a heterodimeric complex with the GTPase HBS1 (HSP70 SUBFAMILY B SUPPRESSOR1, also called SUPERKILLER PROTEIN7, SKI7), a protein that is responsible for ribosomal rescue and thereby assures the quality and fidelity of mRNA molecules during translation. Genetic analysis further revealed that a dysfunctional PEL1-HBS1 complex failed to degrade the T-DNA-disrupted PDK1 transcripts, which were truncated but functional, and thus rescued the growth and developmental defects of pdk1.1 pdk1.2. Our studies demonstrated the functionality of a homologous PELOTA-HBS1 complex and identified its essential regulatory role in plants, providing insights into the mechanism of mRNA quality control.


Channels ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 17-33 ◽  
Author(s):  
D. M. Waldner ◽  
N. C. Giraldo Sierra ◽  
S. Bonfield ◽  
L. Nguyen ◽  
I. S. Dimopoulos ◽  
...  

2008 ◽  
Vol 47 (7) ◽  
pp. 1332-1334 ◽  
Author(s):  
Michael Meltzer ◽  
Sonja Hasenbein ◽  
Patrick Hauske ◽  
Nicolette Kucz ◽  
Melisa Merdanovic ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Catherine M Drerup ◽  
Amy L Herbert ◽  
Kelly R Monk ◽  
Alex V Nechiporuk

Mitochondrial transport in axons is critical for neural circuit health and function. While several proteins have been found that modulate bidirectional mitochondrial motility, factors that regulate unidirectional mitochondrial transport have been harder to identify. In a genetic screen, we found a zebrafish strain in which mitochondria fail to attach to the dynein retrograde motor. This strain carries a loss-of-function mutation in actr10, a member of the dynein-associated complex dynactin. The abnormal axon morphology and mitochondrial retrograde transport defects observed in actr10 mutants are distinct from dynein and dynactin mutant axonal phenotypes. In addition, Actr10 lacking the dynactin binding domain maintains its ability to bind mitochondria, arguing for a role for Actr10 in dynactin-mitochondria interaction. Finally, genetic interaction studies implicated Drp1 as a partner in Actr10-dependent mitochondrial retrograde transport. Together, this work identifies Actr10 as a factor necessary for dynactin-mitochondria interaction, enhancing our understanding of how mitochondria properly localize in axons.


2019 ◽  
Vol 11 (3) ◽  
pp. 230-230
Author(s):  
Wenqi Xu ◽  
Jiahui Li ◽  
Bowen Rong ◽  
Bin Zhao ◽  
Mei Wang ◽  
...  

The author would like to add the below information in this correction. A similar study from Chao Lu group was published online on 5 September 2019 in Nature, entitled “The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape” (Weinberg et al., 2019). Although both the studies reported the preferential recognition of H3K36me2 by DNMT3A PWWP, ours in addition uncovered a stimulation function by such interaction on the activity of DNMT3A. On the disease connections, we used a NSD2 gain-of-function model which led to the discovery of potential therapeutic implication of DNA inhibitors in the related cancers, while the other study only used NSD1 and DNMT3A loss-of-function models.


Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2319-2335 ◽  
Author(s):  
Kevin Lüthy ◽  
Davide Mei ◽  
Baptiste Fischer ◽  
Maurizio De Fusco ◽  
Jef Swerts ◽  
...  

AbstractGenetic mutations in TBC1D24 have been associated with multiple phenotypes, with epilepsy being the main clinical manifestation. The TBC1D24 protein consists of the unique association of a Tre2/Bub2/Cdc16 (TBC) domain and a TBC/lysin motif domain/catalytic (TLDc) domain. More than 50 missense and loss-of-function mutations have been described and are spread over the entire protein. Through whole genome/exome sequencing we identified compound heterozygous mutations, R360H and G501R, within the TLDc domain, in an index family with a Rolandic epilepsy exercise-induced dystonia phenotype (http://omim.org/entry/608105). A 20-year long clinical follow-up revealed that epilepsy was self-limited in all three affected patients, but exercise-induced dystonia persisted into adulthood in two. Furthermore, we identified three additional sporadic paediatric patients with a remarkably similar phenotype, two of whom had compound heterozygous mutations consisting of an in-frame deletion I81_K84 and an A500V mutation, and the third carried T182M and G511R missense mutations, overall revealing that all six patients harbour a missense mutation in the subdomain of TLDc between residues 500 and 511. We solved the crystal structure of the conserved Drosophila TLDc domain. This allowed us to predict destabilizing effects of the G501R and G511R mutations and, to a lesser degree, of R360H and potentially A500V. Next, we characterized the functional consequences of a strong and a weak TLDc mutation (TBC1D24G501R and TBC1D24R360H) using Drosophila, where TBC1D24/Skywalker regulates synaptic vesicle trafficking. In a Drosophila model neuronally expressing human TBC1D24, we demonstrated that the TBC1D24G501R TLDc mutation causes activity-induced locomotion and synaptic vesicle trafficking defects, while TBC1D24R360H is benign. The neuronal phenotypes of the TBC1D24G501R mutation are consistent with exacerbated oxidative stress sensitivity, which is rescued by treating TBC1D24G501R mutant animals with antioxidants N-acetylcysteine amide or α-tocopherol as indicated by restored synaptic vesicle trafficking levels and sustained behavioural activity. Our data thus show that mutations in the TLDc domain of TBC1D24 cause Rolandic-type focal motor epilepsy and exercise-induced dystonia. The humanized TBC1D24G501R fly model exhibits sustained activity and vesicle transport defects. We propose that the TBC1D24/Sky TLDc domain is a reactive oxygen species sensor mediating synaptic vesicle trafficking rates that, when dysfunctional, causes a movement disorder in patients and flies. The TLDc and TBC domain mutations’ response to antioxidant treatment we observed in the animal model suggests a potential for combining antioxidant-based therapeutic approaches to TBC1D24-associated disorders with previously described lipid-altering strategies for TBC domain mutations.


2020 ◽  
Author(s):  
Yu-San Huoh ◽  
Bin Wu ◽  
Sehoon Park ◽  
Darren Yang ◽  
Kushagra Bansal ◽  
...  

ABSTRACTAggregate-like biomolecular assemblies are emerging as new conformational states with functionality. Aire, a transcription factor essential for central T cell tolerance, is known to form large aggregate-like assemblies visualized as nuclear foci. We demonstrate that Aire utilizes Caspase Activation Recruitment Domain (CARD) to form filamentous homo-multimers in vitro, and this assembly mediates foci formation and transcriptional activity. However, CARD-mediated multimerization is a double-edged sword as it also makes Aire susceptible to interaction with PML bodies, sites of many nuclear processes including protein quality control of nuclear aggregates. Several loss-of-function Aire mutants, including those causing autoimmune polyendocrine syndrome type-1, form foci with increased PML body association. Directing Aire to PML bodies impairs Aire’s transcriptional activity, while dispersing PML bodies with a viral antagonist restores it. Thus, our study reveals a new regulatory role of PML bodies in Aire function and highlights the interplay between nuclear aggregate-like assemblies and PML-mediated quality control.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Karole N D'Orazio ◽  
Colin Chih-Chien Wu ◽  
Niladri Sinha ◽  
Raphael Loll-Krippleber ◽  
Grant W Brown ◽  
...  

Translation of problematic sequences in mRNAs leads to ribosome collisions that trigger a series of quality control events including ribosome rescue, degradation of the stalled nascent polypeptide, and targeting of the mRNA for decay (No Go Decay or NGD). Using a reverse genetic screen in yeast, we identify Cue2 as the conserved endonuclease that is recruited to stalled ribosomes to promote NGD. Ribosome profiling and biochemistry provide strong evidence that Cue2 cleaves mRNA within the A site of the colliding ribosome. We demonstrate that NGD primarily proceeds via Xrn1-mediated exonucleolytic decay and Cue2-mediated endonucleolytic decay normally constitutes a secondary decay pathway. Finally, we show that the Cue2-dependent pathway becomes a major contributor to NGD in cells depleted of factors required for the resolution of stalled ribosome complexes. Together these results provide insights into how multiple decay processes converge to process problematic mRNAs in eukaryotic cells.​


Sign in / Sign up

Export Citation Format

Share Document