scholarly journals TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model

Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2319-2335 ◽  
Author(s):  
Kevin Lüthy ◽  
Davide Mei ◽  
Baptiste Fischer ◽  
Maurizio De Fusco ◽  
Jef Swerts ◽  
...  

AbstractGenetic mutations in TBC1D24 have been associated with multiple phenotypes, with epilepsy being the main clinical manifestation. The TBC1D24 protein consists of the unique association of a Tre2/Bub2/Cdc16 (TBC) domain and a TBC/lysin motif domain/catalytic (TLDc) domain. More than 50 missense and loss-of-function mutations have been described and are spread over the entire protein. Through whole genome/exome sequencing we identified compound heterozygous mutations, R360H and G501R, within the TLDc domain, in an index family with a Rolandic epilepsy exercise-induced dystonia phenotype (http://omim.org/entry/608105). A 20-year long clinical follow-up revealed that epilepsy was self-limited in all three affected patients, but exercise-induced dystonia persisted into adulthood in two. Furthermore, we identified three additional sporadic paediatric patients with a remarkably similar phenotype, two of whom had compound heterozygous mutations consisting of an in-frame deletion I81_K84 and an A500V mutation, and the third carried T182M and G511R missense mutations, overall revealing that all six patients harbour a missense mutation in the subdomain of TLDc between residues 500 and 511. We solved the crystal structure of the conserved Drosophila TLDc domain. This allowed us to predict destabilizing effects of the G501R and G511R mutations and, to a lesser degree, of R360H and potentially A500V. Next, we characterized the functional consequences of a strong and a weak TLDc mutation (TBC1D24G501R and TBC1D24R360H) using Drosophila, where TBC1D24/Skywalker regulates synaptic vesicle trafficking. In a Drosophila model neuronally expressing human TBC1D24, we demonstrated that the TBC1D24G501R TLDc mutation causes activity-induced locomotion and synaptic vesicle trafficking defects, while TBC1D24R360H is benign. The neuronal phenotypes of the TBC1D24G501R mutation are consistent with exacerbated oxidative stress sensitivity, which is rescued by treating TBC1D24G501R mutant animals with antioxidants N-acetylcysteine amide or α-tocopherol as indicated by restored synaptic vesicle trafficking levels and sustained behavioural activity. Our data thus show that mutations in the TLDc domain of TBC1D24 cause Rolandic-type focal motor epilepsy and exercise-induced dystonia. The humanized TBC1D24G501R fly model exhibits sustained activity and vesicle transport defects. We propose that the TBC1D24/Sky TLDc domain is a reactive oxygen species sensor mediating synaptic vesicle trafficking rates that, when dysfunctional, causes a movement disorder in patients and flies. The TLDc and TBC domain mutations’ response to antioxidant treatment we observed in the animal model suggests a potential for combining antioxidant-based therapeutic approaches to TBC1D24-associated disorders with previously described lipid-altering strategies for TBC domain mutations.

Author(s):  
Atsuko Yoshizawa-Ogasawara ◽  
Kiyomi Abe ◽  
Sayaka Ogikubo ◽  
Satoshi Narumi ◽  
Tomonobu Hasegawa ◽  
...  

AbstractHere, we describe three cases of loss-of-function mutations in the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) domain of dual oxidase 2 (


Author(s):  
Jiamin Jin ◽  
Xiaomei Tong ◽  
Yin-Li Zhang ◽  
Weijie Yang ◽  
Yerong Ma ◽  
...  

Abstract Purpose To study associations between novel WEE2 mutations and patients with fertilization failure or poor fertilization. Methods Thirty-one Chinese patients who underwent treatment with assisted reproductive technology and suffered from repeated (at least two times) total fertilization failure (TFF) or a low fertilization rate were enrolled. Genomic DNA was extracted from patients for whole-exome sequencing. Suspicious mutations were validated by Sanger sequencing. WEE2 protein levels in oocytes from affected patients were examined by immunofluorescence. Disruptive effects of mutations on WEE2 protein stability, subcellular localization, and kinase function were analyzed through western blotting, immunofluorescence, and flow cytometry in HeLa cells. Results Three of thirty-one (9.6%) enrolled patients had six compound heterozygous mutations of the WEE2 gene, and three of them were reported here for the first time (c.115_116insT, c.756_758delTGA, and c.C1459T). Oocytes from affected patients showed decreased WEE2 immunofluorescence signals. In vitro experiments showed that the mutant WEE2 gene caused reduced WEE2 protein levels or cellular compartment translocation in HeLa cells, leading to decreased levels of the phosphorylated Cdc2 protein. Compared with the wild-type WEE2 protein, the mutant WEE2 proteins were also found to have different effects on the cell cycle. Conclusion Three novel compound heterozygous WEE2 variants were found in patients with pronucleus formation failure. This study provides new evidence that WEE2 mutations result in loss of function, which could result in fertilization failure.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Maria Dolores Perez Carrion ◽  
Silvia Marsicano ◽  
Federica Daniele ◽  
Antonella Marte ◽  
Francesca Pischedda ◽  
...  

Neurology ◽  
2019 ◽  
Vol 92 (13) ◽  
pp. e1405-e1415 ◽  
Author(s):  
Nathaniel Elia ◽  
Johanna Palmio ◽  
Marisol Sampedro Castañeda ◽  
Perry B. Shieh ◽  
Marbella Quinonez ◽  
...  

ObjectiveTo identify the genetic and physiologic basis for recessive myasthenic congenital myopathy in 2 families, suggestive of a channelopathy involving the sodium channel gene, SCN4A.MethodsA combination of whole exome sequencing and targeted mutation analysis, followed by voltage-clamp studies of mutant sodium channels expressed in fibroblasts (HEK cells) and Xenopus oocytes.ResultsMissense mutations of the same residue in the skeletal muscle sodium channel, R1460 of NaV1.4, were identified in a family and a single patient of Finnish origin (p.R1460Q) and a proband in the United States (p.R1460W). Congenital hypotonia, breathing difficulties, bulbar weakness, and fatigability had recessive inheritance (homozygous p.R1460W or compound heterozygous p.R1460Q and p.R1059X), whereas carriers were either asymptomatic (p.R1460W) or had myotonia (p.R1460Q). Sodium currents conducted by mutant channels showed unusual mixed defects with both loss-of-function (reduced amplitude, hyperpolarized shift of inactivation) and gain-of-function (slower entry and faster recovery from inactivation) changes.ConclusionsNovel mutations in families with myasthenic congenital myopathy have been identified at p.R1460 of the sodium channel. Recessive inheritance, with experimentally established loss-of-function, is a consistent feature of sodium channel based myasthenia, whereas the mixed gain of function for p.R1460 may also cause susceptibility to myotonia.


Blood ◽  
1999 ◽  
Vol 93 (10) ◽  
pp. 3457-3466 ◽  
Author(s):  
Volker Schuster ◽  
Silvia Seidenspinner ◽  
Petra Zeitler ◽  
Cornelia Escher ◽  
Uwe Pleyer ◽  
...  

Homozygous type I plasminogen deficiency has been identified as a cause of ligneous conjunctivitis. In this study, 5 additional patients with ligneous conjunctivitis are examined. Three unrelated patients (1 boy, 1 elderly woman, and 1 man) had plasminogen antigen levels of less than 0.4, less than 0.4, and 2.4 mg/dL, respectively, but had plasminogen functional residual activity of 17%, 18%, and 17%, respectively. These subjects were compound-heterozygotes for different missense mutations in the plasminogen gene: Lys19 → Glu/Arg513 → His, Lys19 → Glu/Arg216 → His, and Lys19 → Glu/Leu128 → Pro, respectively. The other 2 patients, a 14-year-old boy and his 19-year-old sister, who both presented with a severe course of the disease, exhibited plasminogen antigen and functional activity levels below the detection limit (<0.4 mg/dL and <5%, respectively). These subjects were compound-heterozygotes for a deletion mutation (del Lys212) and a splice site mutation in intron Q (Ex17 + 1del-g) in the plasminogen gene. These findings show that certain compound-heterozygous mutations in the plasminogen gene may be associated with ligneous conjunctivitis. Our findings also suggest that the severity of clinical symptoms of ligneous conjunctivitis and its associated complications may depend on the amount of plasminogen functional residual activity.


2019 ◽  
Vol 5 (2) ◽  
pp. e565 ◽  
Author(s):  
Chong Sun ◽  
Jie Song ◽  
Yanjun Jiang ◽  
Chongbo Zhao ◽  
Jiahong Lu ◽  
...  

ObjectiveTo expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment.MethodsWhole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays.ResultsCommon clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that defective KARS function is responsible for the phenotypes in these individuals.ConclusionsOur results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease.


Author(s):  
Perrine Pennamen ◽  
Angèle Tingaud-Sequeira ◽  
Iveta Gazova ◽  
Margaret Keighren ◽  
Lisa McKie ◽  
...  

ABSTRACTPurposeAlbinism is a clinically and genetically heterogeneous condition. Despite analysis of the nineteen known genes, ∼30% patients remain unsolved. We aimed to identify new genes involved in albinism.MethodsWe sequenced a panel of genes with known or predicted involvement in melanogenesis in 230 unsolved albinism patients.ResultsWe identified variants in the Dopachrome tautomerase (DCT) gene in two patients. One was compound heterozygous for a 14 bp deletion in exon 9 and c.118T>A p.(Cys40Ser). The second was homozygous for c.183C>G p.(Cys61Trp). Both patients had mild hair and skin hypopigmentation, and classical ocular features. CRISPR/Cas9 was used in C57BL/6J mice to create mutations identical to the missense mutations carried by the patients, along with one loss-of-function indel mutation. When bred to homozygosity the three mutations revealed hypopigmentation of the coat, milder for Cys40Ser compared to Cys61Trp or the frameshift mutation. Histological analysis identified significant hypopigmentation of the retinal pigmented epithelium (RPE) indicating that defective RPE melanogenesis could be associated with eye and vision defects. DCT loss of function in zebrafish embryos elicited hypopigmentation both in melanocytes and RPE cells.ConclusionsDCT is the gene for a new type of oculocutaneous albinism that we propose to name OCA8.


Author(s):  
Deirdre O'Sullivan ◽  
Michael Moore ◽  
Susan Byrne ◽  
Andreas O. Reiff ◽  
Susanna Felsenstein

AbstractAcute disseminated encephalomyelitis in association with extensive longitudinal transverse myelitis is reported in a young child with positive anti-myelin oligodendrocyte glycoprotein (MOG) antibody with heterozygous NLRP3 missense mutations; p.(Arg488Lys) and p.(Ser159Ile). This case may well present an exceptional coincidence, but may describe a yet unrecognized feature of the spectrum of childhood onset cryopyrinopathies that contribute to the understanding of the genetic basis for anti-MOG antibody positive encephalomyelitis. Based on this observation, a larger scale study investigating the role of NLRP3 and other inflammasomes in this entity would provide important pathophysiological insights and potentially novel avenues for treatment.


Sign in / Sign up

Export Citation Format

Share Document