scholarly journals Correction to: DNMT3A reads and connects histone H3K36me2 to DNA methylation

2019 ◽  
Vol 11 (3) ◽  
pp. 230-230
Author(s):  
Wenqi Xu ◽  
Jiahui Li ◽  
Bowen Rong ◽  
Bin Zhao ◽  
Mei Wang ◽  
...  

The author would like to add the below information in this correction. A similar study from Chao Lu group was published online on 5 September 2019 in Nature, entitled “The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape” (Weinberg et al., 2019). Although both the studies reported the preferential recognition of H3K36me2 by DNMT3A PWWP, ours in addition uncovered a stimulation function by such interaction on the activity of DNMT3A. On the disease connections, we used a NSD2 gain-of-function model which led to the discovery of potential therapeutic implication of DNA inhibitors in the related cancers, while the other study only used NSD1 and DNMT3A loss-of-function models.

Nature ◽  
2019 ◽  
Vol 573 (7773) ◽  
pp. 281-286 ◽  
Author(s):  
Daniel N. Weinberg ◽  
Simon Papillon-Cavanagh ◽  
Haifen Chen ◽  
Yuan Yue ◽  
Xiao Chen ◽  
...  

2021 ◽  
Author(s):  
Yanbing Wu ◽  
Haoru Wang ◽  
Chao Liu

Fam20C is a Golgi kinase phosphorylating the majority of the secreted proteins. In this decade, the roles of Fam20C has been largely disclosed in the loss-of function models. How the influence of the over-expressed Fam20C on cells or organs, and whether Fam20C was associated to tumorogensis still remain unknown. In the latest publication in Bioscience Reports, a group from the second affiliated hospital of Harbin Medical University established a correlation between the elevated Fam20C expression and the poor prognosis of multiple cancers. In addition, they also proposed the potential mechanisms how the increased Fam20C expression played a detrimental role in tumor progression by suggesting that the up-regulated Fam20C level impacted the infiltration of immune cells and the capability of cancer metastasism. To give an overview of the expanding knowledge of Fam20C involved in the physiological and pathological events, we first reviewed the history of Fam20C studies in this commentary, then, evaluated the correlation of the elevated Fam20C expression to the prognosis of multiple cancers, and finally, interpreted the perspectives that the Fam20C gain-of-function model was also critical for cancer therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1407-1407
Author(s):  
Kim L. Rice ◽  
Ari Melnick ◽  
Kenny Ye ◽  
Windy Berkofsky-Fessler ◽  
Jonathan D. Licht

Abstract The t(11;17)(q23;q21) form of APL involves the production of reciprocal fusion proteins, PLZF-RARα and RARα-PLZF, which mediate malignant transformation by binding to and dysregulating RARα and PLZF target genes. PLZF is expressed in hematopoietic stem cells and is downregulated as cells differentiate. The identification of PLZF target genes including cyclin A2 and MYC is consistent with the hypothesis that PLZF maintains stem cell quiescence by repressing cell cycle driving genes and provides insight into transcriptional pathways disrupted in leukemogenesis. In order to identify additional target genes of PLZF, we constructed a loss of function model in which we suppressed endogenous expression of PLZF using siRNA in KG1a leukemia cells. Our gain of function model consisted of the ectopic expression of PLZF in U937 leukemia cells which do not naturally express PLZF. Expression profiling using GeneChip™ Human Genome U133 Plus 2.0 arrays, which analyze the expression of more than 47,000 transcripts, was performed using both systems. Of the 346 genes identified in the loss of function model, 25% were also regulated by PLZF in the gain of function U937 cell line. Changes in expression of these genes could be direct (through PLZF) or indirect (through secondary effects). In order to determine which genes modulated by changes in PLZF expression are direct transcriptional targets, we immunoprecipitated chromatin using PLZF antibodies in KG1a cells, amplified the products by ligation-mediated PCR and co-hybridized these products with input chromatin to NimbleGen 1.5kB promoter arrays, which represent 24,275 human promoters. Genes bound by PLZF were identified by determining whether consecutively tiled probes were enriched in PLZF-precipitated chromatin as compared to chromatin precipitated with a non-specific antibody. Using a statistical algorithm designed to exclude those probes whose signals of PLZF enrichment might be spuriously identified, we identified 52 genes of the 24,275 on the array as potential PLZF target genes. Strikingly, correlation of these genes with expression analyses revealed that 44% of genes were also significantly regulated by PLZF in the gain of function model and 11% of genes were regulated in the loss of function model. Promoter analyses of a subset of these genes that were identified by ChIP-on-Chip and differentially expressed at least >1.3 fold in PLZF arrays (p<0.05), revealed the presence of a consensus PLZF binding site GTC(C/A)AG in 75% of genes. Analysis of gene ontology for those genes identified by ChIP-on Chip, revealed an enrichment of genes involved in RNA binding and processing as well as genes encoding small G proteins. One gene in particular, RECQL, was directly bound by PLZF in the ChIP-on-Chip assay and transcriptionally regulated by PLZF in both KG1a loss of function and U937 gain of function models. The RECQL protein is a member of the RecQ family of DNA helicases, a class of genes whose mutation is associated with genomic instability tumorigenesis and premature ageing. These data indicate a robust system for the identification of PLZF targets and suggest that PLZF may play a role in genome integrity.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nathan L Absalom ◽  
Vivian W Y Liao ◽  
Kavitha Kothur ◽  
Dinesh C Indurthi ◽  
Bruce Bennetts ◽  
...  

Abstract Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 470
Author(s):  
Jeremy W. Prokop ◽  
Caleb P. Bupp ◽  
Austin Frisch ◽  
Stephanie M. Bilinovich ◽  
Daniel B. Campbell ◽  
...  

Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.


2008 ◽  
Vol 105 (46) ◽  
pp. 18053-18057 ◽  
Author(s):  
Katherine M. Nautiyal ◽  
Ana C. Ribeiro ◽  
Donald W. Pfaff ◽  
Rae Silver

Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1675-1695 ◽  
Author(s):  
Frans E Tax ◽  
James H Thomas ◽  
Edwin L Ferguson ◽  
H Robert Horvitzt

Abstract We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-l7, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup1 7 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup1 7and lag-2, suggest that both genes act at approximately the same time as lin-12in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.


Sign in / Sign up

Export Citation Format

Share Document