scholarly journals Gene-dependent yeast cell death pathway requires AP-3 vesicle trafficking leading to vacuole membrane permeabilization

2021 ◽  
Author(s):  
Zachary D Stolp ◽  
Madhura Kulkarni ◽  
Yining Liu ◽  
Chengzhang Zhu ◽  
Alizay Jalisi ◽  
...  

Unicellular eukaryotes are suggested to undergo self-inflicted destruction. However, molecular details are sparse by comparison to the mechanisms of cell death known for human cells and animal models. Here we report a molecular pathway in Saccharomyces cerevisiae leading to vacuole/lysosome membrane permeabilization and cell death. Following exposure to heat-ramp conditions, a model of environmental stress, we observed that yeast cell death occurs over several hours, suggesting an ongoing molecular dying process. A genome-wide screen for death-promoting factors identified all subunits of the AP-3 adaptor complex. AP-3 promotes stress-induced cell death through its Arf1-GTPase-dependent vesicle trafficking function, which is required to transport and install proteins on the vacuole/lysosome membrane, including a death-promoting protein kinase Yck3. Time-lapse microscopy revealed a sequence of events where AP-3-dependent vacuole permeability occurs hours before the loss of plasma membrane integrity. An AP-3-dependent cell death pathway appears to be conserved in the human pathogen Cryptococcus neoformans.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2134-2134
Author(s):  
Gen Kano ◽  
Maha Almanan ◽  
Bruce Bochner ◽  
Nives Zimmermann

Abstract Abstract 2134 Siglec-8 is a membrane protein predominantly expressed on eosinophils, where its ligation induces cell death. Paradoxically, Siglec-8-induced cell death is markedly enhanced by the eosinophil activation and survival factor IL-5. Thus, Siglec-8 induces cell death preferentially in activated eosinophils, making it an attractive therapeutic target for eosinophil-mediated diseases. However, the mechanism of this survival factor-enhanced cell death is not known. While Siglec-8 ligation (by anti-Siglec-8 antibody) induces caspase-dependent apoptosis in resting eosinophils, it induces caspase-independent cell death in activated eosinophils. We hypothesize that co-stimulating the Siglec-8 and IL-5 pathways induces a necrotic cell death pathway. By morphologically characterizing human peripheral blood eosinophils as “apoptotic” (i.e., shrunk cells with condensed chromatin) or “necrotic” (i.e., swollen cells, disrupted membrane integrity), we found that anti-Siglec-8 + IL-5 co-stimulation yielded more necrotic eosinophils (P = 0.055, 6 donors) than stimulation with anti-Siglec-8 alone. Additionally, we stained with Annexin V and 7AAD and assessed the percent of Annexin V+ cells that are 7AAD+ as an indicator of increased transition of apoptotic cells to secondary necrosis and/or cells dying primarily by necrosis. We found that anti-Siglec-8 + IL-5 co-stimulated cells had a higher ratio of 7AAD+ cells compared with cells treated with anti-Siglec-8 alone (P < 0.001, 25 experiments with 11 independent donors). This higher 7AAD+ ratio, the morphological characteristics and the caspase-independent cell death of co-stimulated cells suggest that Siglec-8 ligation induces a necrotic form of cell death in IL-5-stimulated eosinophils by activating a specific and distinct biochemical pathway. Our previous studies have shown that reactive oxygen species (ROS) production is involved in Siglec-8-induced cell death in both resting and activated eosinophils. However, we have observed that phosphorylation of ERK1/2 and MEK1 was significantly increased in cells co-stimulated with anti-Siglec-8 + IL-5 compared to cells stimulated with IL-5 alone; anti-Siglec-8 alone did not cause ERK1/2 phosphorylation. MEK1 inhibitors U0126 and PD184352 completely blocked anti-Siglec-8 + IL-5-induced cell death; however, intracellular ROS production induced by Siglec-8 ligation was MEK1-independent. In contrast, the ROS inhibitor DPI prevented the anti-Siglec-8 + IL-5-induced enhancement of ERK1/2 phosphorylation and subsequent cell death. Enhanced ROS accumulation in IL-5 treated cells was sufficient to induce enhanced cell death, similar to anti-Siglec-8 treatment. These findings suggest that Siglec-8 ligation leads to ROS-dependent enhancement of IL-5-induced ERK1/2 phosphorylation, which results in enhanced Siglec-8-induced eosinophil cell death. How ERK phosphorylation induces cell death in co-stimulated eosinophils is not known, and ERK's involvement is surprising considering its role in activation of IL-5-stimulated eosinophils. However, recent studies have shown that ERK can be involved in specific types of cell death, namely necroptosis or autophagy, and that spatiotemporal parameters determine whether ERK will induce cell death or activation. Thus, we hypothesized that ERK localization will be altered in eosinophils co-stimulated with anti-Siglec-8 + IL-5 compared with cells treated with IL-5 alone. Western blotting of nuclear and cytoplasmic fractions and immunofluorescence suggest that enhanced ERK1/2 localization and phosphorylation are sustained for at least 2 hours in the nucleus of anti-Siglec-8 + IL-5 co-stimulated cells; cells treated with IL-5 alone have only brief ERK1/2 nuclear localization. The sustained nuclear activation of ERK may explain the change in IL-5 function from eosinophil activation/survival to necrotic death upon Siglec-8 ligation. In summary, ERK is involved in regulating the decision point for eosinophil activation, apoptosis or regulated necrosis. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 29 (3) ◽  
pp. 473-480 ◽  
Author(s):  
Kohsuke Kanekura ◽  
Jianhong Ou ◽  
Takashi Hara ◽  
Lihua J. Zhu ◽  
Fumihiko Urano

Abstract Endoplasmic reticulum (ER) membrane integrity is an emerging target for human chronic diseases associated with ER stress. Despite the underlying importance of compromised ER membrane integrity in disease states, the entire process leading to ER membrane permeabilization and cell death is still not clear due to technical limitations. Here we describe a novel method for monitoring ER membrane integrity at the single-cell level in real time. Using a β-cell line expressing ER-targeted redox sensitive green fluorescent protein, we could identify a β-cell population undergoing ER membrane permeabilization induced by palmitate and could monitor cell fate and ER stress of these cells at the single-cell level. Our method could be used to develop a novel therapeutic modality targeting the ER membrane for ER-associated disorders, including β-cell death in diabetes, neurodegeneration, and Wolfram syndrome.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Elodie Villa ◽  
Rachel Paul ◽  
Ophélie Meynet ◽  
Sophie Volturo ◽  
Guillaume Pinna ◽  
...  

AbstractEscape from cell death is a key event in cancer establishment/progression. While apoptosis is often considered as the main cell death pathway, upon caspase inhibition, cell death is rather delayed than blocked leading to caspase-independent cell death (CICD). Although described for years, CICD’s underlying mechanism remains to be identified. Here, we performed a genome-wide siRNA lethality screening and identified the RING-Type E3 Ubiquitin Transferase (UBR2) as a specific regulator of CICD. Strikingly, UBR2 downregulation sensitized cells towards CICD while its overexpression was protective. We established that UBR2-dependent protection from CICD was mediated by the MAPK/Erk pathway. We then observed that UBR2 is overexpressed in several cancers, especially in breast cancers and contributes to CICD resistance. Therefore, our work defines UBR2 as a novel regulator of CICD, found overexpressed in cancer cells, suggesting that its targeting may represent an innovative way to kill tumor cells.


2003 ◽  
Vol 160 (7) ◽  
pp. 1105-1114 ◽  
Author(s):  
Jean-Pierre Levraud ◽  
Myriam Adam ◽  
Marie-Françoise Luciani ◽  
Chantal de Chastellier ◽  
Richard L. Blanton ◽  
...  

Cell death in the stalk of Dictyostelium discoideum, a prototypic vacuolar cell death, can be studied in vitro using cells differentiating as a monolayer. To identify early events, we examined potentially dying cells at a time when the classical signs of Dictyostelium cell death, such as heavy vacuolization and membrane lesions, were not yet apparent. We observed that most cells proceeded through a stereotyped series of differentiation stages, including the emergence of “paddle” cells showing high motility and strikingly marked subcellular compartmentalization with actin segregation. Paddle cell emergence and subsequent demise with paddle-to-round cell transition may be critical to the cell death process, as they were contemporary with irreversibility assessed through time-lapse videos and clonogenicity tests. Paddle cell demise was not related to formation of the cellulose shell because cells where the cellulose-synthase gene had been inactivated underwent death indistinguishable from that of parental cells. A major subcellular alteration at the paddle-to-round cell transition was the disappearance of F-actin. The Dictyostelium vacuolar cell death pathway thus does not require cellulose synthesis and includes early actin rearrangements (F-actin segregation, then depolymerization), contemporary with irreversibility, corresponding to the emergence and demise of highly polarized paddle cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 930-930 ◽  
Author(s):  
Rebecca Dielschneider ◽  
Hannah Eisenstat ◽  
James B. Johnston ◽  
Spencer B Gibson

Abstract Introduction: Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in North America. Despite many therapeutic advances over the past decade, drug resistance and disease recurrence are common. Novel therapeutic approaches are therefore required to treat CLL. One novel target identified in a variety of cancers, including acute myeloid leukemia, is the lysosome. In transformed cancerous cells, lysosomes were found to be sensitive to permeabilization by lysotropic agents in a process called lysosome membrane permeabilization. Permeabilization of lysosomes releases their acidic and proteolytic contents into the cytoplasm causing lysosome-mediated cell death. The therapeutic strategy of targeting lysosomes has yet to be determined in CLL. Methods: Primary CLL cells were purified from patient peripheral blood using negative selection and separated on a ficoll gradient. Three different lysosome-targeting drugs used in the clinic for other purposes were investigated: a quinolone, a fluoroquinolone antibiotic, and a cationic drug (CAD). To determine the mechanism of action, various dyes were used to stain lysosomes, mitochondria, and reactive oxygen species. Fluorescence was visualized under the confocal microscope and quantified using flow cytometry. To determine the role of reactive oxygen species (ROS) the antioxidants α-tocopherol, lycopene, N-acetyl cysteine, and glutathione were added to cells. To determine the role of proteases the inhibitors zVADfmk, Ca-074-Me, Chymostatin, and E64 were added to cells. Results: All the lysotropic agents except the antibiotic effectively killed CLL cells isolated from patients. The CAD had the greatest activity and was significantly more cytotoxic to the CLL cells as compared to T cells from the same patients and peripheral blood mononuclear cells from non-CLL donors. Treatment was equally effective in p53-proficient and p53-deficient CLL cells, demonstrating that the most aggressive and drug-resistant CLL cells were sensitive to this CAD. Mechanistic studies revealed that lysosome membrane permeabilization occurred within minutes and led to an increase in ROS and loss of mitochondrial membrane potential. The permeabilization of lysosomes was further confirmed by the translocation of transcription factor EB (TFEB) into the nucleus indicating promotion of lysosomal biogenesis. Lipid ROS were necessary to induce cell death, as only lipophilic antioxidants prevented cell death. Lipophilic antioxidants did not prevent lysosomal permeabilization, but did prevent downstream mitochondrial dysfunction. Inhibitors of caspases and lysosomal cathepsins failed to prevent cell death in CLL cells. Conclusions: Results show that the lysosome-targeting quinolone and CAD effectively permeabilize lysosomes and induce lysosome-mediated cell death in primary human CLL cells. This unique mechanism of cell death in CLL is dependent on the generation of lipid ROS, but not on the action of caspases or cathepsins. Overall, targeting lysosomes may be an effective strategy to selectively kill CLL cells regardless of p53 expression. Future studies are focused on the lysosomal differences in B cells and CLL cells. Disclosures No relevant conflicts of interest to declare.


OENO One ◽  
2020 ◽  
Vol 54 (2) ◽  
pp. 359-371
Author(s):  
Camille Duc ◽  
Martine Pradal ◽  
Isabelle Sanchez ◽  
Jessica Noble ◽  
Bruno Blondin ◽  
...  

Yeast cell death can occur during wine alcoholic fermentation, leading to stuck fermentations, which are a major issue for winemakers. Cell death is generally considered to result from ethanol stress that negatively affects membrane integrity. However, it has been recently found that yeast cell death is also related to nitrogen metabolism. Indeed, nitrogen starvation is one of the most frequently encountered starvations in oenological conditions, and yeast is correspondingly able to cope with these deficiencies. However, cell death can also result from yeast inability to implement an appropriate stress response under some conditions of nutrient limitations, most likely not encountered by yeast in the wild. More specifically, a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) was identified that led to cell death when present in low, growth-restricting concentrations. After an examination of gene expression under conditions of imbalance between nitrogen and these non-traditional micronutrients, it appeared that, in addition to already identified mechanisms of gene regulation in relation to nitrogen metabolism, some genes had specific deficiency regulations that may also explain some of the observed cell mortality. Our data include specific regulations of certain key genes of lipid metabolism as well as others concerning DNA stability under unusual deficiency conditions. Our work allows us to propose a model of the mechanisms involved in controlling yeast mortality under oenological fermentation conditions.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1584-1584
Author(s):  
Stefanie Enzenmüller ◽  
Qian Sun ◽  
Klaus-Michael Debatin ◽  
Lüder-Hinrich Meyer

Abstract Although improved treatment of pediatric Acute Lymphoblastic Leukemia (ALL) has become increasingly successful with cure rates of up to 90%, leukemia reoccurrence is clearly associated with inferior prognosis. Treatment failure and resistance in leukemias are considered to involve defects in apoptosis signaling, which forms the basis for apoptogenic treatment approaches such as the use of Bcl-2 inhibitors. Identification of alternative cell death programs like lysosomal membrane permeabilization-induced cell death may provide a novel strategy for the treatment of ALL. Previous studies showed that lysosomal activity, as well as their traffic properties are greatly altered during tumorigenesis. Intralysosomal hydrolases such as cathepsin B, L and D have been implicated in cancer progression and high expression levels are generally associated with poor prognosis. Lysosomotropic agents modulating lysosomal integrity may overcome cell death resistance and might therefore also improve the outcome of high risk or ALL relapse patients. In this study, we investigated the efficacy of the lysosomotropic compound B10, a derivative of Betulinic acid, as well as its combination with the Bcl-2 inhibitor ABT-263 in B-cell precursor- (BCP-) ALL. In BCP-ALL cell lines, B10 showed induction of cell death combined with increased DNA fragmentation. Interestingly, additional treatment with the pan-caspase inhibitor zVAD.fmk only partially rescued B10 triggered loss of cell viability, indicating that B10 is not exclusively inducing caspase-dependent apoptosis, but also induces an additional alternative cell death program. B10 permeabilized lysosomes as indicated by the significant decrease of LysotrackerRED positive populations detected by flow cytometry, and treatment with E-64d, a potent inhibitor of thiol proteases and cathepsins, reduced B10-induced cell death, thus emphasizing the cathepsin-dependent effect of B10. To exclude that B10-induced lysosomal permeabilization might represent a secondary effect, a panel of different substances was tested for their activity on lysosomal membrane integrity. While treatment with dexamethasone, chloroquine, vincristine and asparaginase also showed lysosomal permeabilization, co-treatment with E-64d did not reduce cell death indicating a secondary effect of these compounds on lysosomes. In addition to cell lines, we tested the effect of B10 on 15 primary leukemia samples isolated from ALL bearing mice of established patient-derived NOD/SCID/hu BCP-ALL xenografts. In a majority of these individual patient-derived leukemias, B10 induced cell death that could be inhibited by E-64d, thus demonstrating a lysosomal protease-dependent death program also in primary ALL. In addition to its classical role in triggering the intrinsic mitochondria dependent apoptosis pathway, the pro-apoptotic Bcl-2 family member Bax was previously described to be involved in the regulation of lysosomal membrane integrity, pointing to a possible synergistic effect of B10 and BH3-mimetics. Intriguingly, in cell fractionation assays we observed increased Bax recruitment to lysosomal membranes when B10 is present. Interestingly, co-treatment with the Bcl-2 inhibitor ABT-263, which displaces Bcl-2 from its inhibitory binding to Bax, led to increased lysosomal permeabilization, loss of mitochondrial membrane potential, and caspase activation indicating involvement of the intrinsic apoptosis pathway. The importance of lysosomal Bax recruitment for the activity of ABT-263 and its concomitant effect on lysosomal membrane permeabilization was further supported by Bax knockdown experiments, since induction of lysosomal disruption, release of cathepsins and their subsequent effect on cell death activation by B10 was reduced. Taken together, our findings suggest an important role of lysosomal membrane permeabilization-induced cell death for the activity of Bcl-2 inhibitors such as ABT-263. The combination of BH3 mimetics with lysosomotropic compounds may provide the basis for novel molecular directed treatment strategies. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 26 (21) ◽  
pp. 7880-7891 ◽  
Author(s):  
Mads Gyrd-Hansen ◽  
Thomas Farkas ◽  
Nicole Fehrenbacher ◽  
Lone Bastholm ◽  
Maria Høyer-Hansen ◽  
...  

ABSTRACT The apoptosome, a heptameric complex of Apaf-1, cytochrome c, and caspase-9, has been considered indispensable for the activation of caspase-9 during apoptosis. By using a large panel of genetically modified murine embryonic fibroblasts, we show here that, in response to tumor necrosis factor (TNF), caspase-8 cleaves and activates caspase-9 in an apoptosome-independent manner. Interestingly, caspase-8-cleaved caspase-9 induced lysosomal membrane permeabilization but failed to activate the effector caspases whereas apoptosome-dependent activation of caspase-9 could trigger both events. Consistent with the ability of TNF to activate the intrinsic apoptosis pathway and the caspase-9-dependent lysosomal cell death pathway in parallel, their individual inhibition conferred only a modest delay in TNF-induced cell death whereas simultaneous inhibition of both pathways was required to achieve protection comparable to that observed in caspase-9-deficient cells. Taken together, the findings indicate that caspase-9 plays a dual role in cell death signaling, as an activator of effector caspases and lysosomal membrane permeabilization.


2018 ◽  
Author(s):  
Vadim Le Joncour ◽  
Maija Hyvönen ◽  
Pauliina Filppu ◽  
Pauliina S. Turunen ◽  
Harri Sihto ◽  
...  

AbstractDiffusive by nature, glioma challenges clinical care by the impossibility of complete surgical resection of tumor, leaving the radio- and chemoresistant cells responsible for recurrence intact. We identified mammary-derived growth inhibitor (MDGI/FABP3) as invasive glioma biomarker. Here, we show that high MDGI expression associated with poor patient survival and promoted invasive glioma cell growth bothin vitroandin vivo, while MDGI silencing drastically compromised patient-derived tumoroid viability via induction of lysosomal membrane permeabilization (LMP). This alternative cell death pathway provokes release of lysosomal hydrolases into the cytosol leading inevitably to the cell death. Our results show a novel functional role for MDGI in glioma cell invasion, survival, and maintenance of the lysosomal membrane integrity as well as an unsuspected sensitivity of glioma cells to an LMP-inducing drug, anti-histamine clemastine. In a preclinical study, clemastine-treatment significantly prolonged the survival of intracranial glioblastoma-bearing animals due to eradication of invasive glioma cells. This glioma cell vulnerability to LMP-inducing drugs opens new horizons for development of novel treatments and suggest re-positioning of an established drug for new indication.


Sign in / Sign up

Export Citation Format

Share Document