scholarly journals The road not taken: disconnection of a human-unique cortical pathway in schizophrenia and its effects on naturalistic social cognition

2021 ◽  
Author(s):  
Gaurav H Patel ◽  
David C. Gruskin ◽  
Sophie C. Arkin ◽  
Emery C. Jamerson ◽  
Daniel R. Ruiz-Betancourt ◽  
...  

Background: Efficient processing of complex and dynamic social scenes relies on intact connectivity of many underlying cortical areas and networks, but how connectivity deficits affect this functioning in social cognition remains unknown. Here we measure these relationships using functionally based localization of social cognition areas, resting-state functional connectivity, and movie-watching data. Methods: In 42 schizophrenia participants (SzP) and 41 healthy controls (HC), we measured the functional connectivity of areas localized by face-emotion processing, theory-of-mind, and attention tasks. We quantified the weighted shortest path length between visual and medial prefrontal theory-of-mind areas in both populations to assess the impact of functional connectivity deficits on network structure. We then correlated connectivity along the shortest path in each group with movie-evoked activity in a key node of the theory-of-mind network (TPJp). Results: SzP had pronounced connectivity deficits in temporoparietal junction/posterior superior temporal sulcus (TPJ-pSTS) areas involved in face-emotion processing (t(81)=4.4, p=0.00002). In HC the shortest path connecting visual and medial prefrontal theory-of-mind areas passed through TPJ-pSTS, whereas in SzP the shortest path passed through prefrontal cortex (PFC). While movie-evoked TPJp activity correlated with connectivity along the TPJ-pSTS pathway in both groups (r=0.43, p=0.002), it additionally correlated with connectivity along the PFC pathway only in SzP (rSzP=0.56, p=0.003). Conclusions: Connectivity along the human-unique TPJ-pSTS pathway affects both the network architecture and functioning of areas involved in processing complex dynamic social scenes. These results demonstrate how focal deficits can have widespread impacts across cortex.

2020 ◽  
Vol 32 (6) ◽  
pp. 1130-1141
Author(s):  
Anne-Sophie Käsbauer ◽  
Paola Mengotti ◽  
Gereon R. Fink ◽  
Simone Vossel

Although multiple studies characterized the resting-state functional connectivity (rsFC) of the right temporoparietal junction (rTPJ), little is known about the link between rTPJ rsFC and cognitive functions. Given a putative involvement of rTPJ in both reorienting of attention and the updating of probabilistic beliefs, this study characterized the relationship between rsFC of rTPJ with dorsal and ventral attention systems and these two cognitive processes. Twenty-three healthy young participants performed a modified location-cueing paradigm with true and false prior information about the percentage of cue validity to assess belief updating and attentional reorienting. Resting-state fMRI was recorded before and after the task. Seed-based correlation analysis was employed, and correlations of each behavioral parameter with rsFC before the task, as well as with changes in rsFC after the task, were assessed in an ROI-based approach. Weaker rsFC between rTPJ and right intraparietal sulcus before the task was associated with relatively faster updating of the belief that the cue will be valid after false prior information. Moreover, relatively faster belief updating, as well as faster reorienting, were related to an increase in the interhemispheric rsFC between rTPJ and left TPJ after the task. These findings are in line with task-based connectivity studies on related attentional functions and extend results from stroke patients demonstrating the importance of interhemispheric parietal interactions for behavioral performance. The present results not only highlight the essential role of parietal rsFC for attentional functions but also suggest that cognitive processing during a task changes connectivity patterns in a performance-dependent manner.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Federica Contò ◽  
Grace Edwards ◽  
Sarah Tyler ◽  
Danielle Parrott ◽  
Emily Grossman ◽  
...  

Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.


Author(s):  
Lisa Parikh ◽  
Dongju Seo ◽  
Cheryl Lacadie ◽  
Renata Belfort-DeAguiar ◽  
Derek Groskreutz ◽  
...  

Abstract Context Individuals with type 1 diabetes (T1DM) have alterations in brain activity which have been postulated to contribute to the adverse neurocognitive consequences of T1DM; however, the impact of T1DM and hypoglycemic unawareness on the brain’s resting state activity remains unclear. Objective To determine whether individuals with T1DM and hypoglycemia unawareness (T1DM-Unaware) had changes in the brain resting state functional connectivity compared to healthy controls (HC) and those with T1DM and hypoglycemia awareness (T1DM-Aware). Design Observational study Setting Academic medical center Participants 27 individuals with T1DM and 12 healthy control volunteers participated in the study. Intervention All participants underwent BOLD resting state fMRI brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dl)-hypoglycemic (60mg/dl) clamp. Outcome Changes in resting state functional connectivity Results Using two separate methods of functional connectivity analysis, we identified distinct differences in the resting state brain responses to mild hypoglycemia amongst HC, T1DM-Aware and T1DM-Unaware participants, particularly in the angular gyrus, an integral component of the default mode network (DMN). Furthermore, changes in angular gyrus connectivity also correlated with greater symptoms of hypoglycemia (r = 0.461, P = 0.003) as well as higher scores of perceived stress (r = 0.531, P = 0.016). Conclusion These findings provide evidence that individuals with T1DM have changes in the brain’s resting state connectivity patterns, which may be further associated with differences in awareness to hypoglycemia. These changes in connectivity may be associated with alterations in functional outcomes amongst individuals with T1DM.


2020 ◽  
Vol 13 ◽  
pp. 100276
Author(s):  
Padideh Nasseri ◽  
Alexandra Ycaza Herrera ◽  
Katherine Gillette ◽  
Sophia Faude ◽  
Jessica D. White ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 1647044 ◽  
Author(s):  
Sara Boccadoro ◽  
Roma Siugzdaite ◽  
Anna R. Hudson ◽  
Lien Maeyens ◽  
Charlotte Van Hamme ◽  
...  

2016 ◽  
Vol 34 ◽  
pp. 56-63 ◽  
Author(s):  
G. Rey ◽  
C Piguet ◽  
A Benders ◽  
S Favre ◽  
SB Eickhoff ◽  
...  

AbstractBackgroundPrevious functional magnetic resonance imaging studies in bipolar disorder (BD) have evidenced changes in functional connectivity (FC) in brain areas associated with emotion processing, but how these changes vary with mood state and specific clinical symptoms is not fully understood.MethodsWe investigated resting-state FC between a priori regions of interest (ROIs) from the default-mode network and key structures for emotion processing and regulation in 27 BD patients and 27 matched healthy controls. We further compared connectivity patterns in subgroups of 15 euthymic and 12 non-euthymic patients and tested for correlations of the connectivity strength with measures of mood, anxiety, and rumination tendency. No correction for multiple comparisons was applied given the small population sample and pre-defined target ROIs.ResultsOverall, regardless of mood state, BD patients exhibited increased FC of the left amygdala with left sgACC and PCC, relative to controls. In addition, non-euthymic BD patients showed distinctive decrease in FC between right amygdala and sgACC, whereas euthymic patients showed lower FC between PCC and sgACC. Euthymic patients also displayed increased FC between sgACC and right VLPFC. The sgACC–PCC and sgACC–left amygdala connections were modulated by rumination tendency in non-euthymic patients, whereas the sgACC-VLPFC connection was modulated by both the current mood and tendency to ruminate.ConclusionsOur results suggest that sgACC-amygdala coupling is critically affected during mood episodes, and that FC of sgACC play a pivotal role in mood normalization through its interactions with the VLPFC and PCC. However, these preliminary findings require replication with larger samples of patients.


2019 ◽  
Vol 14 (6) ◽  
pp. 579-589 ◽  
Author(s):  
Cora E Mukerji ◽  
Sarah Hope Lincoln ◽  
David Dodell-Feder ◽  
Charles A Nelson ◽  
Christine I Hooker

ABSTRACT Theory of mind (ToM), the capacity to reason about others’ mental states, is central to healthy social development. Neural mechanisms supporting ToM may contribute to individual differences in children’s social cognitive behavior. Employing a false belief functional magnetic resonance imaging paradigm, we identified patterns of neural activity and connectivity elicited by ToM reasoning in school-age children (N = 32, ages 9–13). Next, we tested relations between these neural ToM correlates and children’s everyday social cognition. Several key nodes of the neural ToM network showed greater activity when reasoning about false beliefs (ToM condition) vs non-mentalistic false content (control condition), including the bilateral temporoparietal junction (RTPJ and LTPJ), precuneus (PC) and right superior temporal sulcus. In addition, children demonstrated task-modulated changes in connectivity among these regions to support ToM relative to the control condition. ToM-related activity in the PC was negatively associated with variation in multiple aspects of children’s social cognitive behavior. Together, these findings elucidate how nodes of the ToM network act and interact to support false belief reasoning in school-age children and suggest that neural ToM mechanisms are linked to variation in everyday social cognition.


2016 ◽  
Vol 242 ◽  
pp. 150-156 ◽  
Author(s):  
Julia Browne ◽  
David L. Penn ◽  
Tenko Raykov ◽  
Amy E. Pinkham ◽  
Skylar Kelsven ◽  
...  

2015 ◽  
Vol 5 (5) ◽  
pp. 267-275 ◽  
Author(s):  
Kaundinya Gopinath ◽  
Venkatagiri Krishnamurthy ◽  
Romeo Cabanban ◽  
Bruce A. Crosson

Sign in / Sign up

Export Citation Format

Share Document