scholarly journals Mechanistic basis for the emergence of EPS1 as a catalyst in plant salicylic acid biosynthesis

2021 ◽  
Author(s):  
Michael P. Torrens-Spence ◽  
Tianjie Li ◽  
Ziqi Wang ◽  
Christopher M. Glinkerman ◽  
Jason O. Matos ◽  
...  

AbstractUnique to plants in the Brassicaceae family, the production of the plant defense hormone salicylic acid (SA) from isochorismate is accelerated by an evolutionarily young isochorismoyl-glutamate pyruvoyl-glutamate lyase, EPS1, which belongs to the BAHD acyltransferase protein family. Here, we report the crystal structures of apo and substrate-analog-bound EPS1 from Arabidopsis thaliana. Assisted by microsecond molecular dynamics simulations, we uncover a unique pericyclic rearrangement lyase mechanism facilitated by the active site of EPS1. We reconstitute the isochorismate-derived pathway of SA biosynthesis in Saccharomyces cerevisiae, which serves as an in vivo platform that helps identify active-site residues critical for EPS1 activity. This study describes the birth of a new catalyst in plant phytohormone biosynthesis by reconfiguring the ancestral active site of a progenitor enzyme to catalyze alternative reaction.One sentence summaryBy reconfiguring the active site of a progenitor acyltransferase-fold, EPS1 acquired the unique, evolutionarily new lyase activity that accelerates phytohormone salicylic acid production in Brassicaceae plants.

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


2005 ◽  
Vol 79 (20) ◽  
pp. 12721-12731 ◽  
Author(s):  
Ákos Putics ◽  
Witold Filipowicz ◽  
Jonathan Hall ◽  
Alexander E. Gorbalenya ◽  
John Ziebuhr

ABSTRACT Replication of the ∼30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.


2018 ◽  
Vol 115 (52) ◽  
pp. E12192-E12200 ◽  
Author(s):  
Haoran Yu ◽  
Paul A. Dalby

The directed evolution of enzymes for improved activity or substrate specificity commonly leads to a trade-off in stability. We have identified an activity–stability trade-off and a loss in unfolding cooperativity for a variant (3M) of Escherichia coli transketolase (TK) engineered to accept aromatic substrates. Molecular dynamics simulations of 3M revealed increased flexibility in several interconnected active-site regions that also form part of the dimer interface. Mutating the newly flexible active-site residues to regain stability risked losing the new activity. We hypothesized that stabilizing mutations could be targeted to residues outside of the active site, whose dynamics were correlated with the newly flexible active-site residues. We previously stabilized WT TK by targeting mutations to highly flexible regions. These regions were much less flexible in 3M and would not have been selected a priori as targets using the same strategy based on flexibility alone. However, their dynamics were highly correlated with the newly flexible active-site regions of 3M. Introducing the previous mutations into 3M reestablished the WT level of stability and unfolding cooperativity, giving a 10.8-fold improved half-life at 55 °C, and increased midpoint and aggregation onset temperatures by 3 °C and 4.3 °C, respectively. Even the activity toward aromatic aldehydes increased up to threefold. Molecular dynamics simulations confirmed that the mutations rigidified the active-site via the correlated network. This work provides insights into the impact of rigidifying mutations within highly correlated dynamic networks that could also be useful for developing improved computational protein engineering strategies.


Author(s):  
Taichi Mizobuchi ◽  
Risako Nonaka ◽  
Motoki Yoshimura ◽  
Katsumasa Abe ◽  
Shouji Takahashi ◽  
...  

Aspartate racemase (AspR) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that is responsible for D-aspartate biosynthesis in vivo. To the best of our knowledge, this is the first study to report an X-ray crystal structure of a PLP-dependent AspR, which was resolved at 1.90 Å resolution. The AspR derived from the bivalve mollusc Scapharca broughtonii (SbAspR) is a type II PLP-dependent enzyme that is similar to serine racemase (SR) in that SbAspR catalyzes both racemization and dehydration. Structural comparison of SbAspR and SR shows a similar arrangement of the active-site residues and nucleotide-binding site, but a different orientation of the metal-binding site. Superposition of the structures of SbAspR and of rat SR bound to the inhibitor malonate reveals that Arg140 recognizes the β-carboxyl group of the substrate aspartate in SbAspR. It is hypothesized that the aromatic proline interaction between the domains, which favours the closed form of SbAspR, influences the arrangement of Arg140 at the active site.


2020 ◽  
Vol 12 (3) ◽  
pp. 536-545
Author(s):  
Arun D. SHARMA ◽  
Inderjeet KAUR

SARS-CoV-2 (COVID-19), member of corona virus family, is a positive single stranded RNA virus. Due to lack of drugs it is spreading its tentacles across the world. Being associated with cough, fever, and respiratory distress, this disease caused more than 15% mortality worldwide. Mpro/3CLpro has recently been regarded as a suitable target for drug design due to its vital role in virus replication. The current study focused on the inhibitory activity of eucalyptol (1,8 cineole), an essential oil component from eucalyptus oil, against Mpro/3CLprofrom SARS-CoV-2. Till date there is no work is undertaken on in-silico analysis of this compound against Mpro/3CLproof SARS-CoV-2. Molecular docking studies were conducted by using 1-click dock tool and Patchdock analysis. In-silico absorption, distribution, metabolism, excretion and toxicity (ADMET) profile were also studied. The calculated parameters such as docking score indicated effective binding of eucalyptol to COVID-19 Mpro protein. Active site prediction revealed the involvement of active site residues in ligand binding. Interactions results indicated that, Mpro/3CLpro/eucalyptol complexes forms hydrophobic interactions. ADMET studies provided guidelines and mechanistic scope for identification of potent anti-COVID 19 drug. Therefore, eucalyptol may represent potential herbal treatment to act as COVID-19 Mpro/3CLproinhibitor, a finding which must be validated in vivo.


2007 ◽  
Vol 189 (12) ◽  
pp. 4456-4464 ◽  
Author(s):  
Dominique Vidal-Ingigliardi ◽  
Shawn Lewenza ◽  
Nienke Buddelmeijer

ABSTRACT Apolipoprotein N-acyl transferase (Lnt) is an essential membrane-bound protein involved in lipid modification of all lipoproteins in gram-negative bacteria. Essential residues in Lnt of Escherichia coli were identified by using site-directed mutagenesis and an in vivo complementation assay. Based on sequence conservation and known protein structures, we predict a model for Lnt, which is a member of the CN hydrolase family. Besides the potential catalytic triad E267-K335-C387, four residues that directly affect the modification of Braun's lipoprotein Lpp are absolutely required for Lnt function. Residues Y388 and E389 are part of the hydrophobic pocket that constitutes the active site. Residues W237 and E343 are located on two flexible arms that face away from the active site and are expected to open and close upon the binding and release of phospholipid and/or apolipoprotein. Substitutions causing temperature-dependent effects were located at different positions in the structural model. These mutants were not affected in protein stability. Lnt proteins from other proteobacteria, but not from actinomycetes, were functional in vivo, and the essential residues identified in Lnt of E. coli are conserved in these proteins.


2001 ◽  
Vol 353 (3) ◽  
pp. 645-653 ◽  
Author(s):  
Istvan J. ENYEDY ◽  
Ildiko M. KOVACH ◽  
Akos BENCSURA

The role of active-site residues in the dealkylation reaction in the PSCS diastereomer of 2-(3,3-dimethylbutyl)methylphosphonofluoridate (soman)-inhibited Torpedo californicaacetylcholinesterase (AChE) was investigated by full-scale molecular dynamics simulations using CHARMM: > 400ps equilibration was followed by 150–200ps production runs with the fully solvated tetracoordinate phosphonate adduct of the wild-type, Trp84Ala and Gly199Gln mutants of AChE. Parallel simulations were carried out with the tetrahedral intermediate formed between serine-200 Oγ of AChE and acetylcholine. We found that the NεH in histidine H+-440 is positioned to protonate the oxygen in choline and thus promote its departure. In contrast, NεH in histidine H+-440 is not aligned for a favourable proton transfer to the pinacolyl O to promote dealkylation, but electrostatic stabilization by histidine H+-440 of the developing anion on the phosphonate monoester occurs. Destabilizing interactions between residues and the alkyl fragment of the inhibitor enforce methyl migration from Cβ to Cα concerted with C—O bond breaking in soman-inhibited AChE. Tryptophan-84, phenyalanine-331 and glutamic acid-199 are within 3.7–3.9 Å (1 Å=10-10 m) from a methyl group in Cβ, 4.5–5.1 Å from Cβ and 4.8–5.8 Å from Cα, and can better stabilize the developing carbenium ion on Cβ than on Cα. The Trp84Ala mutation eliminates interactions between the incipient carbenium ion and the indole ring, but also reduces its interactions with phenylalanine-331 and aspartic acid-72. Tyrosine-130 promotes dealkylation by interacting with the indole ring of tryptophan-84. Glutamic acid-443 can influence the orientation of active-site residues through tyrosine-421, tyrosine-442 and histidine-440 in soman-inhibited AChE, and thus facilitate dealkylation.


2007 ◽  
Vol 189 (19) ◽  
pp. 7069-7076 ◽  
Author(s):  
Sumarin Soonsanga ◽  
Mayuree Fuangthong ◽  
John D. Helmann

ABSTRACT Bacillus subtilis OhrR is the prototype for the one-Cys family of organic peroxide-sensing regulatory proteins. Mutational analyses indicate that the high sensitivity of the active site cysteine (C15) to peroxidation requires three Tyr residues. Y29 and Y40 from the opposing subunit of the functional dimer hydrogen bond with the reactive Cys thiolate, and substitutions at these positions reduce or eliminate the ability of OhrR to respond to organic peroxides. Y19 is also critical for peroxide sensing, and the Ala substitution mutant (OhrR Y19A) is less susceptible to oxidation at the active site C15 in vivo. The Y19A protein also displays decreased sensitivity to peroxide-mediated oxidation in vitro. Y19 is in van der Waals contact with two residues critical for protein function, F16 and R23. The latter residue makes critical contact with the DNA backbone in the OhrR-operator complex. These results indicate that the high sensitivity of the OhrR C15 residue to oxidation requires interactions with the opposed Tyr residues. Oxidative modification of C15 likely disrupts the C15-Y29′-Y40′ hydrogen bond network and thereby initiates conformational changes that reduce the ability of OhrR to bind to its operator site.


2019 ◽  
Author(s):  
Michael P. Torrens-Spence ◽  
Anastassia Bobokalonova ◽  
Valentina Carballo ◽  
Christopher M. Glinkerman ◽  
Tomáš Pluskal ◽  
...  

AbstractSalicylic acid (SA) is an important phytohormone mediating both local and systemic defense responses in plants. Despite over half a century of research, how plants biosynthesize SA remains unresolved. In Arabidopsis, a major part of SA is derived from isochorismate, a key intermediate produced by the isochorismate synthase (ICS), which is reminiscent of SA biosynthesis in bacteria. Whereas bacteria employ an isochorismate pyruvate lyase (IPL) that catalyzes the turnover of isochorismate to pyruvate and SA, plants do not contain an IPL ortholog and generate SA from isochorismate through an unknown mechanism. Combining genetic and biochemical approaches, we delineated the SA biosynthetic pathway downstream of isochorismate in Arabidopsis. We show that PBS3, a GH3 acyl adenylase-family enzyme important for SA accumulation, catalyzes ATP- and Mg2+-dependent conjugation of L-glutamate primarily to the 8-carboxyl of isochorismate and yields the key SA biosynthetic intermediate isochorismoyl-glutamate A. Moreover, EPS1, a BAHD acyltransferase-family protein with previously implicated role in SA accumulation upon pathogen attack, harbors a noncanonical active site and an unprecedented isochorismoyl-glutamate A pyruvoyl-glutamate lyase (IPGL) activity that produces SA from the isochorismoyl-glutamate A substrate. Together, PBS3 and EPS1 form a two-step metabolic pathway to produce SA from isochorismate in Arabidopsis, which is distinct from how SA is biosynthesized in bacteria. This study closes a major knowledge gap in plant SA metabolism and would help develop new strategies for engineering disease resistance in crop plants.


2020 ◽  
Vol 117 (37) ◽  
pp. 23140-23147 ◽  
Author(s):  
Mark D. White ◽  
Laura Dalle Carbonare ◽  
Mikel Lavilla Puerta ◽  
Sergio Iacopino ◽  
Martin Edwards ◽  
...  

In higher plants, molecular responses to exogenous hypoxia are driven by group VII ethylene response factors (ERF-VIIs). These transcriptional regulators accumulate in the nucleus under hypoxia to activate anaerobic genes but are destabilized in normoxic conditions through the action of oxygen-sensing plant cysteine oxidases (PCOs). The PCOs catalyze the reaction of oxygen with the conserved N-terminal cysteine of ERF-VIIs to form cysteine sulfinic acid, triggering degradation via the Cys/Arg branch of the N-degron pathway. The PCOs are therefore a vital component of the plant oxygen signaling system, connecting environmental stimulus with cellular and physiological response. Rational manipulation of PCO activity could regulate ERF-VII levels and improve flood tolerance, but requires detailed structural information. We report crystal structures of the constitutively expressed PCO4 and PCO5 from Arabidopsis thaliana to 1.24 and 1.91 Å resolution, respectively. The structures reveal that the PCOs comprise a cupin-like scaffold, which supports a central metal cofactor coordinated by three histidines. While this overall structure is consistent with other thiol dioxygenases, closer inspection of the active site indicates that other catalytic features are not conserved, suggesting that the PCOs may use divergent mechanisms to oxidize their substrates. Conservative substitution of two active site residues had dramatic effects on PCO4 function both in vitro and in vivo, through yeast and plant complementation assays. Collectively, our data identify key structural elements that are required for PCO activity and provide a platform for engineering crops with improved hypoxia tolerance.


Sign in / Sign up

Export Citation Format

Share Document