scholarly journals Assessing the impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia

2021 ◽  
Author(s):  
Shinya Numata ◽  
Koharu Yamaguchi ◽  
Masaaki Shimizu ◽  
Gen Sakurai ◽  
Ayaka Morimoto ◽  
...  

In humid forests in Southeast Asia, many species from dozens of plant families flower gregariously and fruit synchronously at irregular multi-year intervals. Little is known about how climate change will impact these community-wide mass reproductive events. Here, we perform a comprehensive analysis of reproductive phenology and its environmental drivers based on a monthly reproductive phenology record from 210 species in 41 families in peninsular Malaysia. We find that the proportion of flowering and fruiting species decreased from 1976 to 2010. Using a phenology model with inputs obtained from general circulation models, we show that low-temperature flowering cues became less available during the monitoring period and will further decrease in the future, leading to decreased flowering opportunities in 57% of species in the Dipterocarpaceae family. Our results highlight the vulnerability of and variability in phenological responses across species in tropical ecosystems that differ from temperate and boreal biomes.

2020 ◽  
Vol 51 (4) ◽  
pp. 781-798 ◽  
Author(s):  
Saleem A. Salman ◽  
Mohamed Salem Nashwan ◽  
Tarmizi Ismail ◽  
Shamsuddin Shahid

Abstract Reduction of uncertainty in climate change projections is a major challenge in impact assessment and adaptation planning. General circulation models (GCMs) along with projection scenarios are the major sources of uncertainty in climate change projections. Therefore, the selection of appropriate GCMs for a region can significantly reduce uncertainty in climate projections. In this study, 20 GCMs were statistically evaluated in replicating the spatial pattern of monsoon propagation towards Peninsular Malaysia at annual and seasonal time frames against the 20th Century Reanalysis dataset. The performance evaluation metrics of the GCMs for different time frames were compromised using a state-of-art multi-criteria decision-making approach, compromise programming, for the selection of GCMs. Finally, the selected GCMs were interpolated to 0.25° × 0.25° spatial resolution and bias-corrected using the Asian Precipitation – Highly-Resolved Observational Integration Towards Evaluation (APHRODITE) rainfall as reference data. The results revealed the better performance of BCC-CSM1-1 and HadGEM2-ES in replicating the historical rainfall in Peninsular Malaysia. The bias-corrected projections of selected GCMs revealed a large variation of the mean, standard deviation and 95% percentile of daily rainfall in the study area for two futures, 2020–2059 and 2060–2099 compared to base climate.


2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.


2021 ◽  
Author(s):  
Emmanuel Junior Zuza ◽  
Yoseph Negusse Araya ◽  
Kadmiel Maseyk ◽  
Shonil A Bhagwat ◽  
Kaue de Sousa ◽  
...  

Climate change is altering suitable areas of crop species worldwide, with cascading effects on people and animals reliant upon those crop species as food sources. Macadamia is one of Malawi's most important and profitable crop species. Here, we used an ensemble model approach to determine the current distribution of macadamia producing areas across Malawi in relation to climate. For future distribution of suitable areas, we used the climate outputs of 17 general circulation models (GCM's) based on two climate change scenarios (RCP 4.5 and RCP 8.5). We found that the precipitation of the driest month and isothermality were the climatic variables that strongly influenced macadamia's suitability in Malawi. These climatic requirements were fulfilled across many areas in Malawi under the current conditions. Future projections indicated that large parts of Malawi's macadamia growing regions will remain suitable for macadamia, amounting to 36,910 km2 (39.1%) and 33,511 km2 (35.5%) of land based on RCP 4.5 and RCP 8.5, respectively. Of concern, suitable areas for macadamia production are predicted to shrink by −18% (17,015 km2) and −22% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively, with much of the suitability shifting northwards. Although a net loss of area suitable for macadamia is predicted, some currently unsuitable areas will become suitable in the future. Notably, suitable areas will increase in Malawi's central and northern regions, while the southern region will lose most of its suitable areas. In conclusion, our study provides critical evidence that climate change will significantly affect the macadamia sub-sector in Malawi. Therefore area-specific adaptation strategies are required to build resilience.


2021 ◽  
Author(s):  
Sneha Santy ◽  
Pradeep Mujumdar ◽  
Govindasamy Bala

<p>High industrial discharge, excessive agricultural activities, untreated sewage disposal make the Kanpur region one of the most contaminated stretches of the Ganga river. This study analyses water quality for the combined future climate change and land use land cover scenarios for mid-century for a 238km long Kanpur stretch of Ganga river. Climate change projections from 21 General Circulation Models for the scenarios of RCP 4.5 and RCP 8.5 are considered and Land use Land Cover (LULC) projections are made with QGIS software. Streamflow and water temperature are modelled using the HEC-HMS model and a Water-Air temperature regression model, respectively. Water quality analysis is simulated using the QUAL2K model in terms of nine water quality parameters, dissolved oxygen, biochemical oxygen demand (BOD), ammonia nitrogen, nitrate nitrogen, total nitrogen, organic phosphorus, inorganic phosphorus, total phosphorus and faecal coliform. Climate change impact alone is projected to result in degraded water quality in the future. Combined climate change and LULC change may further degrade water quality, especially at the study area's critical locations. Our study will provide guidance to policymakers to safeguard the Ganga river from further pollution.</p>


<em>Abstract</em>.—Stream fish are expected to be influenced by climate change as they are ectothermic animals living in lotic systems. Using fish presence–absence records in 1,110 stream sites across France, our study aimed at (1) modeling current and future distributions of 35 stream fish species, (2) using an ensemble forecasting approach (i.e., several general circulation models [GCM] × greenhouse gas emission scenarios [GES] × statistical species distribution models [SDM] combinations) to quantify the variability in the future fish species distribution due to each component, and (3) assessing the potential impacts of climate change on fish species distribution and assemblage structure by using a consensus method that accounted for the variability in future projections.


2019 ◽  
Vol 11 (4) ◽  
pp. 1724-1747 ◽  
Author(s):  
M. Allani ◽  
R. Mezzi ◽  
A. Zouabi ◽  
R. Béji ◽  
F. Joumade-Mansouri ◽  
...  

Abstract This study evaluates the impacts of climate change on water supply and demand of the Nebhana dam system. Future climate change scenarios were obtained from five general circulation models (GCMs) of CMIP5 under RCP 4.5 and 8.5 emission scenarios for the time periods, 2021–2040, 2041–2060 and 2061–2080. Statistical downscaling was applied using LARS-WG. The GR2M hydrological model was calibrated, validated and used as input to the WEAP model to assess future water availability. Expected crop growth cycle lengths were estimated using a growing degree days model. By means of the WEAP-MABIA method, projected crop and irrigation water requirements were estimated. Results show an average increase in annual ETo of 6.1% and a decrease in annual rainfall of 11.4%, leading to a 24% decrease in inflow. Also, crops' growing cycles will decrease from 5.4% for wheat to 31% for citrus trees. The same tendency is observed for ETc. Concerning irrigation requirement, variations are more moderated depending on RCPs and time periods, and is explained by rainfall and crop cycle duration variations. As for demand and supply, results currently show that supply does not meet the system demand. Climate change could worsen the situation unless better planning of water surface use is done.


2019 ◽  
Author(s):  
Allison C. Michaelis ◽  
Gary M. Lackmann ◽  
Walter A. Robinson

Abstract. We present multi-seasonal simulations representative of present-day and future thermodynamic environments using the global Model for Prediction Across Scales-Atmosphere (MPAS) version 5.1 with high resolution (15 km) throughout the Northern Hemisphere. We select ten simulation years with varying phases of El Niño-Southern Oscillation (ENSO) and integrate each for 14.5 months. We use analysed sea surface temperature (SST) patterns for present-day simulations. For the future climate simulations, we alter present-day SSTs by applying monthly-averaged temperature changes derived from a 20-member ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs) following the Representative Concentration Pathway (RCP) 8.5 emissions scenario. Daily sea ice fields, obtained from the monthly-averaged CMIP5 ensemble mean sea ice, are used for present-day and future simulations. The present-day simulations provide a reasonable reproduction of large-scale atmospheric features in the Northern Hemisphere such as the wintertime midlatitude storm tracks, upper-tropospheric jets, and maritime sea-level pressure features as well as annual precipitation patterns across the tropics. The simulations also adequately represent tropical cyclone (TC) characteristics such as strength, spatial distribution, and seasonal cycles for most of Northern Hemispheric basins. These results demonstrate the applicability of these model simulations for future studies examining climate change effects on various Northern Hemispheric phenomena, and, more generally, the utility of MPAS for studying climate change at spatial scales generally unachievable in GCMs.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 761 ◽  
Author(s):  
Theodoros Katopodis ◽  
Iason Markantonis ◽  
Nadia Politi ◽  
Diamando Vlachogiannis ◽  
Athanasios Sfetsos

In the context of climate change and growing energy demand, solar technologies are considered promising solutions to mitigate Greenhouse Gas (GHG) emissions and support sustainable adaptation. In Greece, solar power is the second major renewable energy, constituting an increasingly important component of the future low-carbon energy portfolio. In this work, we propose the use of a high-resolution regional climate model (Weather Research and Forecasting model, WRF) to generate a solar climate atlas for the near-term climatological future under the Representative Concentration Pathway (RCPs) 4.5 and 8.5 scenarios. The model is set up with a 5 × 5 km2 spatial resolution, forced by the ERA-INTERIM for the historic (1980–2004) period and by the EC-EARTH General Circulation Models (GCM) for the future (2020–2044). Results reaffirm the high quality of solar energy potential in Greece and highlight the ability of the WRF model to produce a highly reliable future climate solar atlas. Projected changes between the annual historic and future RCPs scenarios indicate changes of the annual Global Horizontal Irradiance (GHI) in the range of ±5.0%. Seasonal analysis of the GHI values indicates percentage changes in the range of ±12% for both scenarios, with winter exhibiting the highest seasonal increases in the order of 10%, and autumn the largest decreases. Clear-sky fraction fclear projects increases in the range of ±4.0% in eastern and north continental Greece in the future, while most of the Greek marine areas might expect above 220 clear-sky days per year.


Sign in / Sign up

Export Citation Format

Share Document