scholarly journals Locus-specific chromatin profiling of evolutionarily young transposable elements

Author(s):  
Darren Taylor ◽  
Robert Lowe ◽  
Claude Philippe ◽  
Kevin C. L. Cheng ◽  
Gael Cristofari ◽  
...  

ABSTRACTDespite a vast expansion in the availability of epigenomic data, our knowledge of the chromatin landscape at interspersed repeats remains highly limited by difficulties in mapping short-read sequencing data to these regions. In particular, little is known about the locus-specific regulation of evolutionarily young transposable elements (TEs), which have been implicated in genome stability, gene regulation and innate immunity in a variety of developmental and disease contexts. Here we propose an approach for generating locus-specific protein-DNA binding profiles at interspersed repeats, which leverages information on the spatial proximity between repetitive and non-repetitive genomic regions. We demonstrate that the combination of HiChIP and a newly developed mapping tool (PAtChER) yields accurate protein enrichment profiles at individual repetitive loci. Using this approach, we reveal previously unappreciated variation in the epigenetic profiles of young TE loci in mouse and human cells. Insights gained using our method will be invaluable for dissecting the molecular determinants of TE regulation and their impact on the genome.

2021 ◽  
Vol 22 (1) ◽  
pp. 468
Author(s):  
Klára Konečná ◽  
Pavla Polanská Sováková ◽  
Karin Anteková ◽  
Jiří Fajkus ◽  
Miloslava Fojtová

Involvement of epigenetic mechanisms in the regulation of telomeres and transposable elements (TEs), genomic regions with the protective and potentially detrimental function, respectively, has been frequently studied. Here, we analyzed telomere lengths in Arabidopsis thaliana plants of Columbia, Landsberg erecta and Wassilevskija ecotypes exposed repeatedly to the hypomethylation drug zebularine during germination. Shorter telomeres were detected in plants growing from seedlings germinated in the presence of zebularine with a progression in telomeric phenotype across generations, relatively high inter-individual variability, and diverse responses among ecotypes. Interestingly, the extent of telomere shortening in zebularine Columbia and Wassilevskija plants corresponded to the transcriptional activation of TEs, suggesting a correlated response of these genomic elements to the zebularine treatment. Changes in lengths of telomeres and levels of TE transcripts in leaves were not always correlated with a hypomethylation of cytosines located in these regions, indicating a cytosine methylation-independent level of their regulation. These observations, including differences among ecotypes together with distinct dynamics of the reversal of the disruption of telomere homeostasis and TEs transcriptional activation, reflect a complex involvement of epigenetic processes in the regulation of crucial genomic regions. Our results further demonstrate the ability of plant cells to cope with these changes without a critical loss of the genome stability.


2021 ◽  
Vol 118 (35) ◽  
pp. e2107320118
Author(s):  
Li He ◽  
Cheng Zhao ◽  
Qingzhu Zhang ◽  
Gaurav Zinta ◽  
Dong Wang ◽  
...  

The CMT2 and RNA-directed DNA methylation (RdDM) pathways have been proposed to separately maintain CHH methylation in specific regions of the Arabidopsis thaliana genome. Here, we show that dysfunction of the chromatin remodeler DDM1 causes hundreds of genomic regions to switch from CMT2 dependency to RdDM dependency in DNA methylation. These converted loci are enriched at the edge regions of long transposable elements (TEs). Furthermore, we found that dysfunction in both DDM1 and RdDM causes strong reactivation of TEs and a burst of TE transposition in the first generation of mutant plants, indicating that the DDM1 and RdDM pathways together are critical to maintaining TE repression and protecting genomic stability. Our findings reveal the existence of a pathway conversion–based backup mechanism to guarantee the maintenance of DNA methylation and genome integrity.


2019 ◽  
Vol 2 (5) ◽  
pp. e201800211 ◽  
Author(s):  
Benjamin Story ◽  
Xing Ma ◽  
Kazue Ishihara ◽  
Hua Li ◽  
Kathryn Hall ◽  
...  

Piwi-interacting RNAs (piRNAs) are important for repressing transposable elements (TEs) and modulating gene expression in germ cells, thereby maintaining genome stability and germ cell function. Although they are also important for maintaining germline stem cells (GSCs) in the Drosophila ovary by repressing TEs and preventing DNA damage, piRNA expression has not been investigated in GSCs or their early progeny. Here, we show that the canonical piRNA clusters are more active in GSCs and their early progeny than late germ cells and also identify more than 3,000 new piRNA clusters from deep sequencing data. The increase in piRNAs in GSCs and early progeny can be attributed to both canonical and newly identified piRNA clusters. As expected, piRNA clusters in GSCs, but not those in somatic support cells (SCs), exhibit ping-pong signatures. Surprisingly, GSCs and early progeny express more TE transcripts than late germ cells, suggesting that the increase in piRNA levels may be related to the higher levels of TE transcripts in GSCs and early progeny. GSCs also have higher piRNA levels and lower TE levels than SCs. Furthermore, the 3′ UTRs of 171 mRNA transcripts may produce sense, antisense, or dual-stranded piRNAs. Finally, we show that alternative promoter usage and splicing are frequently used to modulate gene function in GSCs and SCs. Overall, this study has provided important insight into piRNA production and TE repression in GSCs and SCs. The rich information provided by this study will be a beneficial resource to the fields of piRNA biology and germ cell development.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 118
Author(s):  
Arsala Ali ◽  
Kyudong Han ◽  
Ping Liang

Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of genes nearby and even far away at transcriptional and post-transcriptional levels. There are two known principal ways by which TEs regulate the expression of genes. First, TEs provide cis-regulatory sequences in the genome with their intrinsic regulatory properties for their own expression, making them potential factors for regulating the expression of the host genes. TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs with their sequences showed to be present in a substantial fraction of miRNAs and long non-coding RNAs (lncRNAs), indicating the TE origin of these RNAs. Furthermore, TEs sequences were found to be critical for regulatory functions of these RNAs, including binding to the target mRNA. TEs thus provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences. Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs have been implicated in providing evolutionary novelty to gene regulation. These TE-derived regulatory mechanisms also tend to function in a tissue-specific fashion. In this review, we aim to comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation, mainly focusing on the mechanisms, contribution of different types of TEs, differential roles among tissue types, and lineage-specificity, based on data mostly in humans.


2021 ◽  
Author(s):  
Ana Cristina Colabardini ◽  
Fang Wang ◽  
Zhengqiang Miao ◽  
Lakhansing Pardeshi ◽  
Clara Valero ◽  
...  

Invasive Pulmonary aspergillosis is a life-threatening infection in immunosuppressed patients caused by the filamentous fungus Aspergillus fumigatus. Chromatin structure regulation is important for genome stability maintenance and has the potential to lead to genome rearrangements driving differences in virulence and pathogenesis of different A. fumigatus isolates. Here, we compared the chromatin activities of the most investigated clinical isolates Af293 and CEA17 and uncovered striking differences in the number, locations and expression of transposable elements. We found evidence for higher genome instability in Af293 as compared to CEA17 and identified a spontaneous Af293 variant that exhibits gross chromosomal alterations including the loss of a 320 kb long segment in chromosome VIII and the amplification of a biosynthetic gene cluster. As a consequence of these re-arrangements, the variant shows increased secondary metabolites production, growth and virulence. Our work emphasizes genome stability heterogeneity as an evolutionary driver of A. fumigatus fitness and virulence.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shujun Ou ◽  
Weija Su ◽  
Yi Liao ◽  
Kapeel Chougule ◽  
Jireh R. A. Agda ◽  
...  

Abstract Background Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and provide an opportunity for comprehensive annotation of TEs. Numerous methods exist for annotation of each class of TEs, but their relative performances have not been systematically compared. Moreover, a comprehensive pipeline is needed to produce a non-redundant library of TEs for species lacking this resource to generate whole-genome TE annotations. Results We benchmark existing programs based on a carefully curated library of rice TEs. We evaluate the performance of methods annotating long terminal repeat (LTR) retrotransposons, terminal inverted repeat (TIR) transposons, short TIR transposons known as miniature inverted transposable elements (MITEs), and Helitrons. Performance metrics include sensitivity, specificity, accuracy, precision, FDR, and F1. Using the most robust programs, we create a comprehensive pipeline called Extensive de-novo TE Annotator (EDTA) that produces a filtered non-redundant TE library for annotation of structurally intact and fragmented elements. EDTA also deconvolutes nested TE insertions frequently found in highly repetitive genomic regions. Using other model species with curated TE libraries (maize and Drosophila), EDTA is shown to be robust across both plant and animal species. Conclusions The benchmarking results and pipeline developed here will greatly facilitate TE annotation in eukaryotic genomes. These annotations will promote a much more in-depth understanding of the diversity and evolution of TEs at both intra- and inter-species levels. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 625
Author(s):  
Valeria Cavaliere ◽  
Giovanna Lattanzi ◽  
Davide Andrenacci

Transposable elements (TEs) are mobile genomic sequences that are normally repressed to avoid proliferation and genome instability. Gene silencing mechanisms repress TEs by RNA degradation or heterochromatin formation. Heterochromatin maintenance is therefore important to keep TEs silent. Loss of heterochromatic domains has been linked to lamin mutations, which have also been associated with derepression of TEs. In fact, lamins are structural components of the nuclear lamina (NL), which is considered a pivotal structure in the maintenance of heterochromatin domains at the nuclear periphery in a silent state. Here, we show that a lethal phenotype associated with Lamin loss-of-function mutations is influenced by Drosophila gypsy retrotransposons located in euchromatic regions, suggesting that NL dysfunction has also effects on active TEs located in euchromatic loci. In fact, expression analysis of different long terminal repeat (LTR) retrotransposons and of one non-LTR retrotransposon located near active genes shows that Lamin inactivation determines the silencing of euchromatic TEs. Furthermore, we show that the silencing effect on euchromatic TEs spreads to the neighboring genomic regions, with a repressive effect on nearby genes. We propose that NL dysfunction may have opposed regulatory effects on TEs that depend on their localization in active or repressed regions of the genome.


2015 ◽  
Vol 44 (5) ◽  
pp. e45-e45 ◽  
Author(s):  
Aaron T.L. Lun ◽  
Gordon K. Smyth

Abstract Chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) is widely used to identify binding sites for a target protein in the genome. An important scientific application is to identify changes in protein binding between different treatment conditions, i.e. to detect differential binding. This can reveal potential mechanisms through which changes in binding may contribute to the treatment effect. The csaw package provides a framework for the de novo detection of differentially bound genomic regions. It uses a window-based strategy to summarize read counts across the genome. It exploits existing statistical software to test for significant differences in each window. Finally, it clusters windows into regions for output and controls the false discovery rate properly over all detected regions. The csaw package can handle arbitrarily complex experimental designs involving biological replicates. It can be applied to both transcription factor and histone mark datasets, and, more generally, to any type of sequencing data measuring genomic coverage. csaw performs favorably against existing methods for de novo DB analyses on both simulated and real data. csaw is implemented as a R software package and is freely available from the open-source Bioconductor project.


2012 ◽  
Vol 367 (1587) ◽  
pp. 354-363 ◽  
Author(s):  
S. Renaut ◽  
N. Maillet ◽  
E. Normandeau ◽  
C. Sauvage ◽  
N. Derome ◽  
...  

The nature, size and distribution of the genomic regions underlying divergence and promoting reproductive isolation remain largely unknown. Here, we summarize ongoing efforts using young (12 000 yr BP) species pairs of lake whitefish ( Coregonus clupeaformis ) to expand our understanding of the initial genomic patterns of divergence observed during speciation. Our results confirmed the predictions that: (i) on average, phenotypic quantitative trait loci (pQTL) show higher F ST values and are more likely to be outliers (and therefore candidates for being targets of divergent selection) than non-pQTL markers; (ii) large islands of divergence rather than small independent regions under selection characterize the early stages of adaptive divergence of lake whitefish; and (iii) there is a general trend towards an increase in terms of numbers and size of genomic regions of divergence from the least (East L.) to the most differentiated species pair (Cliff L.). This is consistent with previous estimates of reproductive isolation between these species pairs being driven by the same selective forces responsible for environment specialization. Altogether, dwarf and normal whitefish species pairs represent a continuum of both morphological and genomic differentiation contributing to ecological speciation. Admittedly, much progress is still required to more finely map and circumscribe genomic islands of speciation. This will be achieved through the use of next generation sequencing data but also through a better quantification of phenotypic traits moulded by selection as organisms adapt to new environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document