scholarly journals Evaluating host to host transplants as a method to study plant bacterial assembly

2021 ◽  
Author(s):  
Christopher M Baldock ◽  
Neil Wilson ◽  
Rosalind Deaker

The ability to predict plant microbiome assembly will enable new bacterial-based technologies for agriculture. A major step towards this is quantifying the roles of ecological processes on community assembly. This is challenging, in part because individuals within a populations of host plants may be colonised by different assemblages of bacteria, simply because of variation in soil communities proximal to said plants. This creates uncertainty because it is difficult to estimate if the absence of a given species was a) because it was not present to colonise the plant or b) it went locally extinct from competition, predation or similar. To address this, the authors develop a mesocosm system to study bacterial communities of individual plants by replicated transplantation to a recipient host plant population, ensuring new hosts receive a homogenous species pool for colonisation. We sought to understand which factors affected the transplant and, what the main drivers of variation in the model communities were. A nested factorial design was used to investigate the transplantation of cultured or total, root or leaf associated bacterial communities from donor host species to surrogate host species. Specific metrics were developed to quantify colonisation efficiency of communities. The results show the root communities were more effectively transplanted than leaf communities, and a higher proportion of cultured communities were recovered than total communities. For root communities the strongest drivers of beta diversity was the donor host species, and for leaves it was the surrogate host species. Overall the results reveal that root, but not leaf communities are suited to this system reflecting their differing ecological drivers.

2020 ◽  
Vol 96 (9) ◽  
Author(s):  
Ragnhild I Vestrum ◽  
Kari J K Attramadal ◽  
Olav Vadstein ◽  
Madeleine Stenshorne Gundersen ◽  
Ingrid Bakke

ABSTRACT Many studies demonstrate the importance of the commensal microbiomes to animal health and development. However, the initial community assembly process is poorly understood. It is unclear to what extent the hosts select for their commensal microbiota, whether stochastic processes contribute, and how environmental conditions affect the community assembly. We investigated community assembly in Atlantic cod larvae exposed to distinct microbial metacommunities. We aimed to quantify ecological processes influencing community assembly in cod larvae and to elucidate the complex relationship between the bacteria of the environment and the fish. Selection within the fish was the major determinant for community assembly, but drift resulted in inter-individual variation. The environmental bacterial communities were highly dissimilar from those associated with the fish. Still, differences in the environmental bacterial communities strongly influenced the fish communities. The most striking difference was an excessive dominance of a single OTU (Arcobacter) for larvae reared in two of the three systems. These larvae were exposed to environments with higher fractions of opportunistic bacteria, and we hypothesise that detrimental host–microbe interactions might have made the fish susceptible to Arcobacter colonisation. Despite strong selection within the host, this points to a possibility to steer the metacommunity towards mutualistic host–microbe interactions and improved fish health and survival.


mBio ◽  
2021 ◽  
Author(s):  
Yuan Ge ◽  
Zhongwang Jing ◽  
Qingyun Diao ◽  
Ji-Zheng He ◽  
Yong-Jun Liu

Honeybees provide crucial pollination services and valuable apiarian products. The symbiotic intestinal communities facilitate honeybee health and fitness by promoting nutrient assimilation, detoxifying toxins, and resisting pathogens.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Zhiyuan Yao ◽  
Shicong Du ◽  
Chunling Liang ◽  
Yueji Zhao ◽  
Francisco Dini-Andreote ◽  
...  

ABSTRACTBacterial communities play essential roles in estuarine marsh ecosystems, but the interplay of ecological processes underlying their community assembly is poorly understood. Here, we studied the sediment bacterial communities along a linear gradient extending from the water-land junction toward a high marsh, using 16S rRNA gene amplicon sequencing. Bacterial community compositions differed significantly between sediment transects. Physicochemical properties, particularly sediment nutrient levels (i.e., total nitrogen [TN] and available phosphorus [AP]), as well as sediment physical structure and pH (P < 0.05), were strongly associated with the overall community variations. In addition, the topological properties of bacterial cooccurrence networks varied with distance to the water-land junction. Both node- and network-level topological features revealed that the bacterial network of sediments farthest from the junction was less intense in complexity and interactions than other sediments. Phylogenetic null modeling analysis showed a progressive transition from stochastic to deterministic community assembly for the water-land junction sites toward the emerging terrestrial system. Taken together, data from this study provide a detailed outline of the distribution pattern of the sediment bacterial community across an estuarine marsh and inform the mechanisms and processes mediating bacterial community assembly in marsh soils.IMPORTANCESalt marshes represent highly dynamic ecosystems where the atmosphere, continents, and the ocean interact. The bacterial distribution in this ecosystem is of great ecological concern, as it provides essential functions acting on ecosystem services. However, ecological processes mediating bacterial assembly are poorly understood for salt marshes, especially the ones located in estuaries. In this study, the distribution and assembly of bacterial communities in an estuarine marsh located in south Hangzhou Bay were investigated. The results revealed an intricate interplay between stochastic and deterministic processes mediating the assembly of bacterial communities in the studied gradient system. Collectively, our findings illustrate the main drivers of community assembly, taking into consideration changes in sediment abiotic variables and potential biotic interactions. Thus, we offer new insights into estuarine bacterial communities and illustrate the interplay of ecological processes shaping the assembly of bacterial communities in estuarine marsh ecosystems.


2016 ◽  
Vol 363 (15) ◽  
pp. fnw122 ◽  
Author(s):  
Tsakani Miyambo ◽  
Thulani P. Makhalanyane ◽  
Don A. Cowan ◽  
Angel Valverde

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


2021 ◽  
Author(s):  
Jennifer L. Houtz ◽  
Jon G. Sanders ◽  
Anthony Denice ◽  
Andrew H. Moeller

2020 ◽  
Vol 63 (5) ◽  
pp. 419-427
Author(s):  
Nehru Prabakaran

AbstractThe inter-specific resilience among mangrove species to sea level rise (SLR) is a key to design conservation strategies for this economically important ecosystem that is among the most vulnerable to SLR. Tectonic processes can cause sudden increases or drops in sea level due to subsidence or uplift of the land surface, which can also provide insights for the mangrove community responses to rapid sea level change. This study aimed to investigate the responses of mangrove species to rapid SLR caused by land subsidence of 1.1 m during the 2004 Sumatra-Andaman earthquake at Car Nicobar Island. The Rhizophora spp. showed remarkable resilience to this rapid SLR, while the landward mangrove vegetation comprising Bruguiera spp., Lumnitzera spp., Sonneratia spp. etc., were unable to survive. Also, Rhizophora spp. establishment in the previous landward mangrove zones was more rapid than the landward mangrove species establishment in the previous terrestrial zones. The observed resilience of Rhizophora spp. may be due to the local specific geological legacy and species-specific ecological processes. However, further studies focusing on microcosm experiments to understand the Rhizophora spp. resilience to rapid SLR at the study site is required to strengthen these observations.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 567
Author(s):  
Misty Stevenson ◽  
Kalynn L. Hudman ◽  
Alyx Scott ◽  
Kelsey Contreras ◽  
Jeffrey G. Kopachena

Based on surveys of winter roost sites, the eastern migratory population of the monarch butterfly (Danaus plexippus) in North America appears to have declined in the last 20 years and this has prompted the implementation of numerous conservation strategies. However, there is little information on the survivorship of first-generation monarchs in the core area of occupancy in Texas, Oklahoma, and Louisiana where overwinter population recovery begins. The purpose of this study was to determine the survivorship of first-generation eggs to third instars at a site in north Texas and to evaluate host plant arthropods for their effect on survivorship. Survivorship to third instar averaged 13.4% and varied from 11.7% to 15.6% over three years. The host plants harbored 77 arthropod taxa, including 27 predatory taxa. Despite their abundance, neither predator abundance nor predator richness predicted monarch survival. However, host plants upon which monarchs survived often harbored higher numbers of non-predatory arthropod taxa and more individuals of non-predatory taxa. These results suggest that ecological processes may have buffered the effects of predators and improved monarch survival in our study. The creation of diverse functional arthropod communities should be considered for effective monarch conservation, particularly in southern latitudes.


1973 ◽  
Vol 62 (4) ◽  
pp. 549-556 ◽  
Author(s):  
H. J. B. Lowe

Apterous adult Myzus persicae (Sulz.) of a glasshouse strain differed greatly in their ability to colonise sugar-beet according to the plant on which they and their forebears were cultured. Those from Chinese cabbage (Brassica pekinensis) settled least readily on beet, whilst aphids from broad beans (Vicia faba) produced larger populations than those cultured on sugar-beet. When reared wholly on groundsel (Senecio vulgaris) young adults differed in their ability to colonise Chinese cabbage, sugar-beet and broad bean according to their parents' culture host species, and these differences were detected in a second generation reared wholly on groundsel. The responses of clones isolated from cultures maintained continuously on Chinese cabbage and broad bean were similar, showing that the effect was caused by the aphids' host-plant experience, and was not due to fixed, heritable characters of the sub-cultures. Some, but not all clones of M. persicae collected from the field showed enhanced colonising ability after culture on broad bean as compared with Chinese cabbage. This was apparent on sugar-beet and lettuce (Lactuca sativa). These effects of former hosts on the ability of M. persicae to colonise plants may be important both in work on resistance to aphids and in the epidemiology of aphid-borne diseases.


Sign in / Sign up

Export Citation Format

Share Document