scholarly journals Metallothionein-2A protect Cardiomyocytes from Ischemia/Reperfusion through inhibiting p38

2021 ◽  
Author(s):  
Ying Zhao ◽  
Xiaoli Huang ◽  
Yuanlin Lei ◽  
Jike Li

AbstractThe resumption of coronary artery blood supply is often accompanied by myocardial ischemia/reperfusion (I/R) injury after the occurrence of myocardial infarction, shock, cardiac surgery and other events. Metallothionein-2A (MT2A) has the functions of scavenging free radicals, anti-oxidative stress, anti-apoptosis, anti-autophagy, promoting vascular growth. The activation of p38 MAPK pathway can induce cardiomyocyte apoptosis in H9c2 cardiomyocytes during I/R, thereby aggravating the myocardial I/R injury. However, it is not clear that the effect of MT2A on p38 in cardiomyocytes under I/R. A simulated I/R model was used. Our objective was to investigate the protective effect of MT2A on I/R-caused mortality in H9c2 cardiomyocytes through its influence on p38, as well as the relationships among these processes. The results indicate that both endogenously overexpressed MT2A and exogenously added MT2A can inhibit the active expression of p38 during I/R. Based on these results, I/R induces apoptosis and p-p38 in cardiomyocytes. MT2A can inhibit the active expression of p38. MT2A protects cardiomyocytes from I/R injury, and that p38 is one of the molecules of MT2A against I/R injury in cardiomyocytes.

2021 ◽  
Vol 11 ◽  
Author(s):  
Cheng-Yin Liu ◽  
Yi Zhou ◽  
Tao Chen ◽  
Jing-Chao Lei ◽  
Xue-Jun Jiang

Arctigenin, one of the active ingredients extracted from Great Burdock (Arctium lappa) Achene, has been found to relieve myocardial infarction injury. However, the specific mechanism of Arctigenin against myocardial infarction remains largely unknown. Here, both acute myocardial ischemia-reperfusion injury (AMI/R) rat model and oxygen glucose deprivation (OGD)-induced myocardial cell injury model were constructed to explore the underlying role of AMPK/SIRT1 pathway in Arctigenin-mediated effects. The experimental data in our study demonstrated that Arctigenin ameliorated OGD-mediated cardiomyocytes apoptosis, inflammation and oxidative stress in a dose-dependent manner. Besides, Arctigenin activated AMPK/SIRT1 pathway and downregulated NF-κB phosphorylation in OGD-treated cardiomyocytes, while inhibiting AMPK or SIRT1 by the Compound C (an AMPK inhibitor) or SIRT1-IN-1 (a SIRT1 inhibitor) significantly attenuated Arctigenin-exerted protective effects on cardiomyocytes. In the animal experiments, Arctigenin improved the heart functions and decreased infarct size of the AMI/R-rats, accompanied with downregulated oxidative stress, inflammation and apoptotic levels in the heart tissues. What’s more, Arctigenin enhanced the AMPK/SIRT1 pathway and repressed NF-κB pathway activation. Taken together, our data indicated that Arctigenin reduced cardiomyocytes apoptosis against AMI/R-induced oxidative stress and inflammation at least via AMPK/SIRT1 pathway.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 75
Author(s):  
Laura Valls-Lacalle ◽  
Lídia Puertas-Umbert ◽  
Saray Varona ◽  
José Martínez-González ◽  
Cristina Rodríguez ◽  
...  

Lysyl oxidase (LOX) is an enzyme critically involved in collagen maturation, whose activity releases H2O2 as a by-product. Previous studies demonstrated that LOX over-expression enhances reactive oxygen species (ROS) production and exacerbates cardiac remodeling induced by pressure overload. However, whether LOX influences acute myocardial infarction and post-infarct left ventricular remodeling and the contribution of LOX to myocardial oxidative stress following ischemia-reperfusion have not been analyzed. Isolated hearts from transgenic mice over-expressing human LOX in the heart (TgLOX) and wild-type (WT) littermates were subjected to global ischemia and reperfusion. Although under basal conditions LOX transgenesis is associated with higher cardiac superoxide levels than WT mice, no differences in ROS production were detected in ischemic hearts and a comparable acute ischemia-reperfusion injury was observed (infarct size: 56.24 ± 9.44 vs. 48.63 ± 2.99% of cardiac weight in WT and TgLOX, respectively). Further, similar changes in cardiac dimensions and function were observed in TgLOX and WT mice 28 days after myocardial infarction induced by transient left anterior descending (LAD) coronary artery occlusion, and no differences in scar area were detected (20.29 ± 3.10 vs. 21.83 ± 2.83% of left ventricle). Our data evidence that, although LOX transgenesis induces baseline myocardial oxidative stress, neither ROS production, infarct size, nor post-infarction cardiac remodeling were exacerbated following myocardial ischemia-reperfusion.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rong Chen ◽  
Wei Li ◽  
Zhen Qiu ◽  
Qin Zhou ◽  
Yuan Zhang ◽  
...  

Intestinal mucosal barrier dysfunction induced by myocardial ischemia reperfusion (IR) injury often leads to adverse cardiovascular outcomes after myocardial infarction. Early detection and prevention of remote intestinal injury following myocardial IR may help to estimate and improve prognosis after acute myocardial infarction (AMI). This study investigated the protective effect of myocardial ischemic postconditioning (IPo) on intestinal barrier injury induced by myocardial IR and the underlying cellular signaling mechanisms with a focus on the DJ-1. Adult SD rats were subjected to unilateral myocardial IR with or without ischemic postconditioning. After 30 min of ischemia and 120 min of reperfusion, heart tissue, intestine, and blood were collected for subsequent examination. The outcome measures were (i) intestinal histopathology, (ii) intestinal barrier function and inflammatory responses, (iii) apoptosis and oxidative stress, and (iv) cellular signaling changes. IPo significantly attenuated intestinal injury induced by myocardial IR. Furthermore, IPo significantly increased DJ-1, nuclear Nrf2, NQO1, and HO-1 expression in the intestine and inhibited IR-induced apoptosis and oxidative stress. The protective effect of IPo was abolished by the knockdown of DJ-1. Conversely, the overexpression of DJ-1 provided a protective effect similar to that of IPo. Our data indicate that IPo protects the intestine against myocardial IR, which is likely mediated by the upregulation of DJ-1/Nrf2 pathway.


2018 ◽  
Vol 25 (3) ◽  
pp. 355-366 ◽  
Author(s):  
Monika Bartekova ◽  
Miroslav Barancik ◽  
Kristina Ferenczyova ◽  
Naranjan S. Dhalla

Background: Ischemia-reperfusion (I/R) injury of the heart as a consequence of myocardial infarction or cardiac surgery represents a serious clinical problem. One of the most prominent mechanisms of I/R injury is the development of oxidative stress in the heart. In this regard, I/R has been shown to enhance the production of reactive oxygen/nitrogen species in the heart which lead to the imbalance between the pro-oxidants and antioxidant capacities of the endogenous radical-scavenging systems. Objectives: Increasing the antioxidant capacity of the heart by the administration of exogenous antioxidants is considered beneficial for the heart exposed to I/R. N-acetylcysteine (NAC) and Nmercaptopropionylglycine (MPG) are two sulphur containing amino acid substances, which belong to the broad category of exogenous antioxidants that have been tested for their protective potential in cardiac I/R injury. Observations: Pretreatment of hearts with both NAC and MPG has demonstrated that these agents attenuate the I/R-induced alterations in sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils in addition to improving cardiac function. While experimental studies have revealed promising data suggesting beneficial effects of NAC and MPG in cardiac I/R injury, the results of clinical trials are not conclusive because both positive and no effects of these substances have been reported on the post-ischemic recovery of heart following cardiac surgery or myocardial infarction. Conclusion: It is concluded that both NAC and MPG exert beneficial effects in preventing the I/Rinduced injury; however, further studies are needed to establish their effectiveness in reversing the I/R-induced abnormalities in the heart.


2020 ◽  
Vol 48 (12) ◽  
pp. 030006052096909
Author(s):  
Liexiang Cao ◽  
Yi Gao ◽  
Jinqiang Zhu ◽  
Jinbo Zhang ◽  
Meiping Dong ◽  
...  

Objective To investigate the protective effects of the ginsenoside Rh3 on rats subjected to myocardial ischemia-reperfusion (MIR) via its impact on caspase-3 and the p38 mitogen-activated protein kinase (MAPK) pathway. Methods Fifteen male Sprague-Dawley rats were randomly categorized into the MIR group (MY group, n = 5), sham surgery group (SS group, n = 5), and ginsenoside Rh3 group (GR group, n = 5). Results The MY group exhibited the largest myocardial infarctions compared with the GR and SS groups. The GR group exhibited significantly higher cell viability of cardiomyocytes and significantly decreased apoptosis compared with the MY group. Fibrils of infarcted tissue in the GR group were disordered but less swollen, with a more organized fibril orientation than those in the MY group. The GR group showed reduced p-p38 MAPK protein and caspase-3 mRNA expression levels compared with the MY and SS groups. Conclusions Rh3 significantly improved myocardial necrosis and caspase-3 levels in myocardial tissues by suppressing the p38 MAPK pathway, thereby inhibiting caspase-3 involvement in apoptosis. Thus, Rh3 was effective in inhibiting the escalated apoptotic pathway in myocardial infarction and can potentially serve as a useful therapeutic agent to rescue myocardial infarction.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yong Li ◽  
Hongbo Zhang ◽  
Zhanhu Li ◽  
Xiaoju Yan ◽  
Yuan Li ◽  
...  

Abstract Background Myocardial ischemia reperfusion injury (MIRI) is defined as tissue injury in the pathological process of progressive aggravation in ischemic myocardium after the occurrence of acute coronary artery occlusion. Research has documented the involvement of microRNAs (miRs) in MIRI. However, there is obscure information about the role of miR-130a-5p in MIRI. Herein, this study aims to investigate the effect of miR-130a-5p on MIRI. Methods MIRI mouse models were established. Then, the cardiac function and hemodynamics were detected using ultrasonography and multiconductive physiological recorder. Functional assays in miR-130a-5p were adopted to test the degrees of oxidative stress, mitochondrial functions, inflammation and apoptosis. Hematoxylin and eosin (HE) staining was performed to validate the myocardial injury in mice. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was employed to assess the expression patterns of miR-130a-5p, high mobility group box (HMGB)2 and NF-κB. Then, dual-luciferase reporter gene assay was performed to elucidate the targeting relation between miR-130a-5p and HMGB2. Results Disrupted structural arrangement in MIRI mouse models was evident from HE staining. RT-qPCR revealed that overexpressed miR-130a-5p alleviated MIRI, MIRI-induced oxidative stress and mitochondrial disorder in the mice. Next, the targeting relation between miR-130a-5p and HMGB2 was ascertained. Overexpressed HMGB2 annulled the protective effects of miR-130a-5p in MIRI mice. Additionally, miR-130a-5p targets HMGB2 to downregulate the nuclear factor kappa-B (NF-κB) axis, mitigating the inflammatory injury induced by MIRI. Conclusion Our study demonstrated that miR-130a-5p suppresses MIRI by down-regulating the HMGB2/NF-κB axis. This investigation may provide novel insights for development of MIRI treatments.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Aleksandra Kezic ◽  
Ivan Spasojevic ◽  
Visnja Lezaic ◽  
Milica Bajcetic

Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document