scholarly journals Genetic-epigenetic interactions in paternal transgenerational inheritance of metabolic disorders

2021 ◽  
Author(s):  
Anne-Sophie Pepin ◽  
Christine Lafleur ◽  
Romain Lambrot ◽  
Vanessa Dumeaux ◽  
Sarah Kimmins

Parental environmental exposures can strongly influence descendant risks for adult disease. Metabolic disorders arise from the intersection of environmental and genetic risk factors, with epigenetic inheritance being at the center of the familial cycle of transgenerational disease. How paternal high-fat diet changes the sperm chromatin leading to the acquisition of metabolic disease in offspring remains controversial and ill-defined. Using a genetic model of epigenetic inheritance, we investigated the role of histone H3 lysine 4 methylation (H3K4me3) in the paternal transmission of metabolic dysfunction. We show that obesity-induced alterations in sperm H3K4me3 associated with offspring phenotypes and corresponded to embryonic and placental chromatin profiles and gene expression. Transgenerational susceptibility to metabolic disease was only observed when grandsires had a pre-existing genetic predisposition to metabolic dysfunction that was associated with enhanced alterations to sperm H3K4me3. This non-DNA based knowledge of inheritance has the potential to improve our understanding of how environment shapes heritability and may lead to novel routes for the prevention of disease.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
David R. Sweet ◽  
Neelakantan T. Vasudevan ◽  
Liyan Fan ◽  
Chloe E. Booth ◽  
Komal S. Keerthy ◽  
...  

AbstractSubstantial evidence implicates crosstalk between metabolic tissues and the immune system in the inception and progression of obesity. However, molecular regulators that orchestrate metaflammation both centrally and peripherally remains incompletely understood. Here, we identify myeloid Krüppel-like factor 2 (KLF2) as an essential regulator of obesity and its sequelae. In mice and humans, consumption of a fatty diet downregulates myeloid KLF2 levels. Under basal conditions, myeloid-specific KLF2 knockout mice (K2KO) exhibit increased feeding and weight gain. High-fat diet (HFD) feeding further exacerbates the K2KO metabolic disease phenotype. Mechanistically, loss of myeloid KLF2 increases metaflammation in peripheral and central tissues. A combination of pair-feeding, bone marrow-transplant, and microglial ablation implicate central and peripheral contributions to K2KO-induced metabolic dysfunction observed. Finally, overexpression of myeloid KLF2 protects mice from HFD-induced obesity and insulin resistance. Together, these data establish myeloid KLF2 as a nodal regulator of central and peripheral metabolic inflammation in homeostasis and disease.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Yu T Zhao ◽  
Jianfeng Du ◽  
Thomas J Zhao ◽  
Hao Wang ◽  
Marshall Kadin ◽  
...  

Background: p38 regulated/activated protein kinase (PRAK) plays a crucial role in modulating cell death and survival. However, the role of PRAK in mediating cardiac dysfunction and metabolic disorders remains unclear. We examined the effects of deletion of PRAK on modulating cardiac function and insulin resistance in mice exposed to a high fat diet (HFD). Methods: Wild type and PRAK -/- mice at 8 weeks old were exposed to either chow food or HFD for a consecutive 16 weeks. Glucose tolerance test and insulin tolerance test were employed to assess insulin resistance. Echocardiography was employed to assess myocardial function. Western blot was used to determine the molecular signaling involved in phosphorylation of IRS-1, AMPKα, ERK-44/42, and irisin. Real time-PCR was used to assess the hypertrophic genes of the myocardium. Histological analysis was employed to assess the hypertrophic response, interstitial myocardial fibrosis, and apoptosis in the heart. Results: HFD induced metabolic stress is indicated by glucose intolerance and insulin intolerance. PRAK knockout aggravated insulin resistance, as indicated by glucose intolerance and insulin intolerance testing as compared to wild type littermates. As compared to wild type, hyperglycemia and hypercholesterolemia were manifested in PRAK-knockout mice following high fat diet intervention. High fat diet intervention displayed a decline in fractional shortening (FS) and ejection fraction (EF). However, deletion of PRAK exacerbated the decline in EF and FS as compared to wild type mice following HFD treatment. In addition, PRAK knockout mice enhanced the expression of myocardial hypertrophic genes including ANP, BNP, and βMHC in HFD treatment, which was also associated with an increase in cardiomyocyte size and interstitial fibrosis. Western blot indicated that deletion of PRAK induces decreases in phosphorylation of IRS-1, AMPKα, and ERK44/42 as compared to wild type controls. Conclusion: Our finding indicates that deletion of PRAK promoted myocardial dysfunction, cardiac remodeling, and metabolic disorders in response to HFD.


Adipocyte ◽  
2014 ◽  
Vol 3 (4) ◽  
pp. 333-338 ◽  
Author(s):  
Tapan K Chatterjee ◽  
Joshua E Basford ◽  
Kan Hui Yiew ◽  
David W Stepp ◽  
David Y Hui ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 7995
Author(s):  
Jianfeng Du ◽  
Yu Tina Zhao ◽  
Hao Wang ◽  
Ling X. Zhang ◽  
Gangjian Qin ◽  
...  

Regulated/activated protein kinase (PRAK) plays a crucial role in modulating biological function. However, the role of PRAK in mediating cardiac dysfunction and metabolic disorders remains unclear. We examined the effects of deletion of PRAK on modulating cardiac function and insulin resistance in mice exposed to a high-fat diet (HFD). Wild-type and PRAK−/− mice at 8 weeks old were exposed to either chow food or HFD for a consecutive 16 weeks. Glucose tolerance tests and insulin tolerance tests were employed to assess insulin resistance. Echocardiography was employed to assess myocardial function. Western blot was used to determine the molecular signaling involved in phosphorylation of IRS-1, AMPKα, ERK-44/42, and irisin. Real time-PCR was used to assess the hypertrophic genes of the myocardium. Histological analysis was employed to assess the hypertrophic response, interstitial myocardial fibrosis, and apoptosis in the heart. Western blot was employed to determine cellular signaling pathway. HFD-induced metabolic stress is indicated by glucose intolerance and insulin intolerance. PRAK knockout aggravated insulin resistance, as indicated by glucose intolerance and insulin intolerance testing as compared with wild-type littermates. As compared with wild-type mice, hyperglycemia and hypercholesterolemia were manifested in PRAK-knockout mice following high-fat diet intervention. High-fat diet intervention displayed a decline in fractional shortening and ejection fraction. However, deletion of PRAK exacerbated the decline in cardiac function as compared with wild-type mice following HFD treatment. In addition, PRAK knockout mice enhanced the expression of myocardial hypertrophic genes including ANP, BNP, and βMHC in HFD treatment, which was also associated with an increase in cardiomyocyte size and interstitial fibrosis. Western blot indicated that deletion of PRAK induces decreases in phosphorylation of IRS-1, AMPKα, and ERK44/42 as compared with wild-type controls. Our finding indicates that deletion of PRAK promoted myocardial dysfunction, cardiac remodeling, and metabolic disorders in response to HFD.


Author(s):  
Y. Li ◽  
L. Jin ◽  
J. Yan ◽  
Y. Huang ◽  
H. Zhang ◽  
...  

Abstract Purpose Whether Tsukushi (TSK) can protect against high-fat diet (HFD)-induced obesity and improve glucose metabolism remains controversial. Serum levels of TSK in the population have not been reported until now. We assessed the association among TSK level, TSKU genotype, and metabolic traits in humans. Methods Associations between serum TSK levels and metabolic traits were assessed in 144 Han Chinese individuals. Loci in the TSKU gene region were further genotyped in 11,022 individuals. The association between the loci and serum TSK level was evaluated using the additive genetic model. The association between the loci and their metabolic traits in humans were also verified. Results Lower TSK levels were observed in obese subjects than in control subjects (median and interquartile range 17.78:12.07–23.28 vs. 23.81:12.54–34.56, P < 0.05). However, in obese subjects, TSK was positively associated with BMI (β ± SE: 0.63 ± 0.31, P = 0.049), visceral fat area (β ± SE: 12.15 ± 5.94, P = 0.011), and deterioration of glucose metabolism. We found that rs11236956 was associated with TSK level in obese subjects (β 95% CI 0.17, 0.07–0.26; P = 0.0007). There was also a significant association between rs11236956 and metabolic traits in our population. Conclusions Our findings showed that serum TSK levels were associated with metabolic disorders in obese subjects. We also identified rs11236956 to be associated with serum TSK levels in obese subjects and with metabolic disorders in the total population.


2020 ◽  
Author(s):  
Kathryn M. Spitler ◽  
Shwetha K. Shetty ◽  
Emily M. Cushing ◽  
Kelli L. Sylvers-Davie ◽  
Brandon S.J. Davies

ABSTRACTElevated plasma triglyceride levels are associated with metabolic disease. Angiopoietin-like protein 4 (ANGPTL4) regulates plasma triglyceride levels by inhibiting lipoprotein lipase (LPL). Our aim was to investigate the role of tissue-specific ANGPTL4 expression in the setting of high fat diet. Adipocyte- and hepatocyte-specific ANGPTL4 deficient mice were fed a high fat diet (60% kCal from fat) for either 12 weeks or 6 months. We performed plasma metabolic measurements, triglyceride clearance and uptake assays, LPL activity assays, and assessed glucose homeostasis. Mice lacking adipocyte ANGPTL4 recapitulated the triglyceride phenotypes of whole-body ANGPTL4 deficiency, whereas mice lacking hepatocyte ANGPTL4 had few triglyceride phenotypes. When fed a high fat diet (HFD), mice deficient in adipocyte ANGPTL4 gained more weight, had enhanced adipose LPL activity, and initially had improved glucose and insulin sensitivity. However, this improvement was largely lost after 6 months on HFD. Conversely, mice deficient in hepatocyte ANGPTL4 initially displayed no differences in glucose homeostasis, but began to manifest improved glucose tolerance after 6 months on HFD. We conclude that it is primarily adipocyte-derived ANGPTL4 that is responsible for regulating plasma triglyceride levels. Deficiency in adipocyte- or hepatocyte-derived ANGPTL4 may confer some protections against high fat diet induced dysregulation of glucose homeostasis.


2020 ◽  
Author(s):  
Yuhuan Li ◽  
Qingyang Zhang ◽  
Guanshen Cui ◽  
Fang Zhao ◽  
Xin Tian ◽  
...  

AbstractN6-methyladenosine (m6A) RNA methylation is one of the most abundant modifications on mRNAs and plays an important role in various biological processes. The formation of m6A is catalysed by a methyltransferase complex containing a key factor methyltransferase-like 3 (Mettl3). However, the functions of Mettl3 and m6A modification in liver lipid and glucose metabolism remain unclear. Here, we show that both Mettl3 expression and m6A level increased in the liver of mice with High Fat Diet (HFD)-induced metabolic disorders, and overexpression of Mettl3 aggravated HFD-induced liver metabolic disorders and insulin resistance. Hepatocyte-specific knockout of Mettl3 significantly alleviated HFD-induced metabolic disorders by slowing weight gain, reducing lipid accumulation and improving insulin sensitivity. Mechanistically, Mettl3 depletion-mediated m6A loss causes extended RNA half-lives of metabolism-related genes, consequently protects mice against HFD-induced metabolic syndrome. Our findings reveal a critical role of Mettl3-mediated m6A in HFD-induced metabolic disorders and hepatogenous diabetes.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
C Charkhonpunya ◽  
S Sireeratawong ◽  
S Komindr ◽  
N Lerdvuthisopon

Sign in / Sign up

Export Citation Format

Share Document