scholarly journals Naturalistic stimuli reveal a critical period in visual cortex development: Evidence from adult-onset blindness

2021 ◽  
Author(s):  
Elizabeth Musz ◽  
Rita Loiotile ◽  
Janice Chen ◽  
Rhodri Cusack ◽  
Marina Bedny

AbstractHow do life experiences impact cortical function? In people who are born blind, the “visual” cortices are recruited for nonvisual tasks such as Braille reading and sound localization (e.g., Collignon et al., 2011; Sadato et al., 1996). The mechanisms of this recruitment are not known. Do visual cortices have a latent capacity to respond to nonvisual information that is equal throughout the lifespan? Alternatively, is there a sensitive period of heightened plasticity that makes visual cortex repurposing possible during childhood? To gain insight into these questions, we leveraged naturalistic auditory stimuli to quantify and compare cross-modal responses congenitally blind (CB, n=22), adult-onset blind (vision loss >18 years-of-age, AB, n=14) and sighted (n=22) individuals. Participants listened to auditory excerpts from movies; a spoken narrative; and matched meaningless auditory stimuli (i.e., shuffled sentences, backwards speech) during fMRI scanning. These rich naturalistic stimuli made it possible to simultaneous engage a broad range of cognitive domains. We correlated the voxel-wise timecourses of different participants within each group. For all groups, all stimulus conditions induced synchrony in auditory cortex and for all groups only the narrative stimuli synchronized responses in higher-cognitive fronto-parietal and temporal regions. Inter-subject synchrony in visual cortices was high in the CB group for the movie and narrative stimuli but not for meaningless auditory controls. In contrast, visual cortex synchrony was equally low among AB and sighted blindfolded participants. Even many years of blindness in adulthood fail to enable responses to naturalistic auditory information in visual cortices of people who had sight as children. These findings suggest that cross-modal responses in visual cortex of people born blind reflect the plasticity of developing visual cortex during a sensitive period.

2018 ◽  
Author(s):  
Shipra Kanjlia ◽  
Rashi Pant ◽  
Marina Bedny

AbstractStudies of sensory loss are a model for understanding the functional flexibility of human cortex. In congenital blindness, subsets of visual cortex are recruited during higher-cognitive tasks, such as language and math tasks. Is such dramatic functional repurposing possible throughout the lifespan or restricted to sensitive periods in development? We compared visual cortex function in individuals who lost their vision as adults (after age 17) to congenitally blind and sighted blindfolded adults. Participants took part in resting-state and task-based fMRI scans during which they solved math equations of varying difficulty and judged the meanings of sentences. Blindness at any age caused “visual” cortices to synchronize with specific fronto-parietal networks at rest. However, in task-based data, visual cortices showed regional specialization for math and language and load-dependent activity only in congenital blindness. Thus, despite the presence of long-range functional connectivity, cognitive repurposing of human cortex is limited by sensitive periods.


2021 ◽  
Author(s):  
Elizabeth Musz ◽  
Rita Loiotile ◽  
Janice Chen ◽  
Marina Bedny

AbstractOccipital cortices of different sighted people contain analogous maps of visual information (e.g., foveal vs. peripheral space). In congenital blindness, “visual” cortices enhance responses to nonvisual stimuli. Do deafferented visual cortices of different blind people represent common informational maps? We leverage a naturalistic stimulus paradigm and inter-subject pattern similarity analysis to address this question. Blindfolded sighted (S, n=22) and congenitally blind (CB, n=22) participants listened to three auditory excerpts from movies; a naturalistic spoken narrative; and matched degraded auditory stimuli (i.e., shuffled sentences and backwards speech) while undergoing fMRI scanning. In a parcel-based whole brain analysis, we measured the spatial activity patterns evoked by each unique, ten-second segment of each auditory clip. We then compared each subject’s spatial pattern to that of all other subjects in the same group (CB or S) within and across segments. In both blind and sighted groups, segments of meaningful auditory stimuli produced distinctive patterns of activity that were shared across individuals. Crucially, only in the CB group, this segment-specific, cross-subject pattern similarity effect emerged in visual cortex, but only for meaningful naturalistic stimuli and not backwards speech. These results suggest that spatial activity patterns within deafferented visual cortices encode meaningful, segment-level information contained in naturalistic auditory stimuli, and that these representations are spatially organized in a similar fashion across blind individuals.Significance StatementRecent neuroimaging studies show that the so-called “visual” cortices activate during non-visual tasks in people who are born blind. Do the visual cortices of people who are born blind develop similar representational maps? While congenitally blind individuals listened to naturalistic auditory stimuli (i.e., sound clips from movies), distinct timepoints within each stimulus elicited unique spatial activity patterns in visual cortex, and these patterns were shared across different people. These findings suggest that in blindness, the visual cortices encode meaningful information embedded in naturalistic auditory signals in a spatially distributed manner, and that a common representational map can emerge in visual cortex independent of visual experience.


2018 ◽  
Vol 29 (9) ◽  
pp. 3993-4005 ◽  
Author(s):  
Shipra Kanjlia ◽  
Rashi Pant ◽  
Marina Bedny

Abstract Studies of sensory loss are a model for understanding the functional flexibility of human cortex. In congenital blindness, subsets of visual cortex are recruited during higher-cognitive tasks, such as language and math tasks. Is such dramatic functional repurposing possible throughout the lifespan or restricted to sensitive periods in development? We compared visual cortex function in individuals who lost their vision as adults (after age 17) to congenitally blind and sighted blindfolded adults. Participants took part in resting-state and task-based fMRI scans during which they solved math equations of varying difficulty and judged the meanings of sentences. Blindness at any age caused “visual” cortices to synchronize with specific frontoparietal networks at rest. However, in task-based data, visual cortices showed regional specialization for math and language and load-dependent activity only in congenital blindness. Thus, despite the presence of long-range functional connectivity, cognitive repurposing of human cortex is limited by sensitive periods.


2018 ◽  
Author(s):  
Rita E. Loiotile ◽  
Marina Bedny

AbstractHow functionally flexible is human cortex? In congenitally blind individuals, “visual” cortices are active during auditory and tactile tasks. The cognitive role of these responses and the underlying mechanisms remain uncertain. A dominant view is that, in blindness, “visual” cortices process information from low-level auditory and somatosensory systems. An alternative hypothesis is that higher-cognitive fronto-parietal systems take over “visual” cortices. We report that, in congenitally blind individuals, right-lateralized “visual” cortex responds to executiveload in a go/no-go task. These right-lateralized occipital cortices of blind, but not sighted, individuals mirrored the executive-function pattern observed in fronto-parietal systems. In blindness, the same “visual” cortex area, at rest, also increases its synchronization with prefrontal executive control regions and decreases its synchronization with auditory and sensorimotor cortices. These results support the hypothesis of top-down fronto-parietal takeover of “visual” cortices, and suggest that human cortex is highly flexible at birth.


2021 ◽  
Author(s):  
Katarzyna Rączy ◽  
Cordula Hölig ◽  
Maria J. S. Guerreiro ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
...  

Sensory deprivation, following a total loss of one sensory modality e.g. vision, has been demonstrated to result in intra- and cross-modal plasticity. It is yet not known to which extent intra- and cross-modal plasticity as a consequence of blindness reverse if sight is restored. Here, we used functional magnetic resonance imaging to acquire blood oxygen level dependent (BOLD) resting state activity during an eyes open and an eyes closed state in congenital cataract-reversal individuals, developmental cataract-reversal individuals, congenitally permanently blind individuals and sighted controls. The amplitude of low frequency fluctuations (ALFF) of the BOLD signal - a neural marker of spontaneous brain activity during rest - was analyzed. As has been shown before, in normally sighted controls we observed an increase in ALFF during rest with the eyes open compared to rest with eyes closed in visual association areas and in parietal cortex but a decrease in auditory and sensorimotor regions. In congenital cataract-reversal individuals, we found an increase of the amplitude of slow BOLD fluctuations in visual cortex during rest with eyes open compared to rest with eyes closed too but this increase was larger in amplitude than in normally sighted controls. At the same time, congenital cataract-reversal individuals lagged a similar increase in parietal regions and did not show the typical decrease of ALFF in auditory and sensorimotor cortex. Congenitally blind individuals displayed an overall higher amplitude in slow BOLD fluctuations in visual cortex compared to sighted individuals and compared to congenital cataract-reversal individuals in the eyes closed condition. Higher ALFF in visual cortex of congenital cataract-reversal individuals than in normally sighted controls during eyes open might indicate an altered excitatory-inhibitory balance of visual neural circuits. By contrast, the lower parietal increase and the missing downregulation in auditory and sensorimotor regions suggest a reduced influence of the visual system on multisensory and the remaining sensory systems after restoring sight in congenitally blind individuals. These results demonstrate a crucial dependence of multisensory neural networks on visual experience during a sensitive phase in human brain development.


2019 ◽  
Author(s):  
Rashi Pant ◽  
Shipra Kanjlia ◽  
Marina Bedny

ABSTRACTIn congenital blindness, “visual” cortices respond to linguistic information, and fronto-temporal language networks are less left-lateralized. Does this plasticity follow a sensitive period? We tested this by comparing the neural basis of sentence processing in two experiments with adult-onset blind (AB, n=16), congenitally blind (CB, n=22) and blindfolded sighted controls (n=18). In Experiment 1, participants made semantic judgments for spoken sentences and solved math equations in a control condition. In Experiment 2, participants answered “who did what to whom” questions for grammatically complex (with syntactic movement) and grammatically simpler sentences. In a control condition, participants performed a memory task with lists of non-words. In both experiments, visual cortices of CB and AB but not sighted participants responded more to sentences than control conditions, but the effect was much larger in the CB group. Crucially, only the “visual” cortex of CB participants responded to grammatical complexity. Unlike the CB group, the AB group showed no reduction in left-lateralization of fronto-temporal language network relative to the sighted. These results suggest that blindness during development modifies the neural basis of language, and this effect follows a sensitive period.


2021 ◽  
Vol 11 (2) ◽  
pp. 270
Author(s):  
Angelito Braulio F. de Venecia ◽  
Shane M. Fresnoza

Proliferative diabetic retinopathy (PDR) is a severe complication of diabetes. PDR-related retinal hemorrhages often lead to severe vision loss. The main goals of management are to prevent visual impairment progression and improve residual vision. We explored the potential of transcranial direct current stimulation (tDCS) to enhance residual vision. tDCS applied to the primary visual cortex (V1) may improve visual input processing from PDR patients’ retinas. Eleven PDR patients received cathodal tDCS stimulation of V1 (1 mA for 10 min), and another eleven patients received sham stimulation (1 mA for 30 s). Visual acuity (logarithm of the minimum angle of resolution (LogMAR) scores) and number acuity (reaction times (RTs) and accuracy rates (ARs)) were measured before and immediately after stimulation. The LogMAR scores and the RTs of patients who received cathodal tDCS decreased significantly after stimulation. Cathodal tDCS has no significant effect on ARs. There were no significant changes in the LogMAR scores, RTs, and ARs of PDR patients who received sham stimulation. The results are compatible with our proposal that neuronal noise aggravates impaired visual function in PDR. The therapeutic effect indicates the potential of tDCS as a safe and effective vision rehabilitation tool for PDR patients.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
B. L. Mayer ◽  
L. H. A. Monteiro

A Newman-Watts graph is formed by including random links in a regular lattice. Here, the emergence of synchronization in coupled Newman-Watts graphs is studied. The whole neural network is considered as a toy model of mammalian visual pathways. It is composed by four coupled graphs, in which a coupled pair represents the lateral geniculate nucleus and the visual cortex of a cerebral hemisphere. The hemispheres communicate with each other through a coupling between the graphs representing the visual cortices. This coupling makes the role of the corpus callosum. The state transition of neurons, supposed to be the nodes of the graphs, occurs in discrete time and it follows a set of deterministic rules. From periodic stimuli coming from the retina, the neuronal activity of the whole network is numerically computed. The goal is to find out how the values of the parameters related to the network topology affect the synchronization among the four graphs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256791
Author(s):  
Daichi Konno ◽  
Shinji Nishimoto ◽  
Takafumi Suzuki ◽  
Yuji Ikegaya ◽  
Nobuyoshi Matsumoto

The brain continuously produces internal activity in the absence of afferently salient sensory input. Spontaneous neural activity is intrinsically defined by circuit structures and associated with the mode of information processing and behavioral responses. However, the spatiotemporal dynamics of spontaneous activity in the visual cortices of behaving animals remain almost elusive. Using a custom-made electrode array, we recorded 32-site electrocorticograms in the primary and secondary visual cortex of freely behaving rats and determined the propagation patterns of spontaneous neural activity. Nonlinear dimensionality reduction and unsupervised clustering revealed multiple discrete states of the activity patterns. The activity remained stable in one state and suddenly jumped to another state. The diversity and dynamics of the internally switching cortical states would imply flexibility of neural responses to various external inputs.


Sign in / Sign up

Export Citation Format

Share Document