scholarly journals Sensorimotor feedback loops are selectively sensitive to reward

2021 ◽  
Author(s):  
Olivier Codol ◽  
Christopher Forgaard ◽  
Joseph Galea ◽  
Paul Gribble

While it is well established that motivational factors such as earning more money for performing well improve motor performance, how the motor system implements this improvement remains unclear. For instance, feedback-based control, which uses sensory feedback from the body to correct for errors in movement, improves with greater reward. But feedback control encompasses many feedback loops with diverse characteristics such as the brain regions involved and their response time. Which specific loops drive these performance improvements with reward is unknown, even though their diversity makes it unlikely that they are contributing uniformly. This lack of mechanistic insight leads to practical limitations in applications using reward, such as clinical rehabilitation, athletic coaching, and brain-inspired robotics. We systematically tested the effect of reward on the latency (how long for a corrective response to arise?) and gain (how large is the corrective response?) of eight distinct sensorimotor feedback loops in humans. Only the feedback responses known to rely on prefrontal associative cortices showed sensitivity to reward, while feedback responses that relied mainly on premotor and sensorimotor cortex did not show sensitivity to reward. Our results may have implications regarding feedback control performance in pathologies showing a cognitive decline, or on athletic coaching. For instance, coaching methodologies that rely on reinforcement or "reward shaping" may need to specifically target aspects of movement that rely on reward-sensitive feedback responses.

2017 ◽  
Vol 118 (1) ◽  
pp. 84-92 ◽  
Author(s):  
Johannes Keyser ◽  
W. Pieter Medendorp ◽  
Luc P. J. Selen

When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb. NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hajar Miranzadeh Mahabadi ◽  
Haseeb Bhatti ◽  
Robert B. Laprairie ◽  
Changiz Taghibiglou

AbstractThe type 1 and type 2 cannabinoid receptors (CB1 and CB2 receptors) are class A G protein-coupled receptors (GPCRs) that are activated by endogenous lipids called endocannabinoids to modulate neuronal excitability and synaptic transmission in neurons throughout the central nervous system (CNS), and inflammatory processes throughout the body. CB1 receptor is one of the most abundant GPCRs in the CNS and is involved in many physiological and pathophysiological processes, including mood, appetite, and nociception. CB2 receptor is primarily found on immunomodulatory cells of both the CNS and the peripheral immune system. In this study, we isolated lipid raft and non-lipid raft fractions of plasma membrane (PM) from mouse cortical tissue by using cold non-ionic detergent and sucrose gradient centrifugation to study the localization of CB1 receptor and CB2 receptor. Lipid raft and non-lipid raft fractions were confirmed by flotillin-1, caveolin-1 and transferrin receptor as their protein biomarkers. Both CB1 receptor and CB2 receptor were found in non-raft compartments that is inconsistent with previous findings in cultured cell lines. This study demonstrates compartmentalization of both CB1 receptor and CB2 receptor in cortical tissue and warrants further investigation of CB1 receptor and CB2 receptor compartmental distribution in various brain regions and cell types.


2013 ◽  
Vol 111 (4) ◽  
pp. 755-755
Author(s):  
Marianne A. Yon ◽  
Suzanna L. Mauger ◽  
Lucy C. Pickavance

Of the environmental factors which have an impact on body weight, nutrients are most influential. Within normal limits, hypothalamic and related neuronal populations correct perturbations in energy metabolism, to return the body to its nutritional set-point, either through direct response to nutrients or indirectly via peripheral appetite signals. Excessive intake of certain macronutrients, such as simple carbohydrates and SFA, can lead to obesity and attendant metabolic dysfunction, also reflected in alterations in structural plasticity, and, intriguingly, neurogenesis, in some of these brain regions. Neurogenesis, previously thought to occur only in the embryo, is now known to take place in the adult brain, dependent on numerous stimulating and inhibiting factors, including dietary components. Because of classic associations between neurogenesis and the hippocampus, in learning and cognition, this brain region has also been the focus of attention in the study of links between diet and neurogenesis. Recently, however, a more complete picture of this relationship has been building: not only has the hypothalamus been shown to satisfy the criteria for a neurogenic niche, but appetite-related mediators, including circulating hormones, such as leptin and ghrelin, pro-inflammatory cytokines and the endocannabinoid intracellular messengers, are also being examined for their potential role in mediating neurogenic responses to macronutrients. The present review draws together these observations and investigates whether n-3 PUFA may exert their attenuating effects on body weight through the stimulation of adult neurogenesis. Exploration of the effects of nutraceuticals on neurogenic brain regions may encourage the development of new rational therapies in the fight against obesity.


1976 ◽  
Vol 231 (3) ◽  
pp. 945-953 ◽  
Author(s):  
DB Young ◽  
RE McCaa ◽  
UJ Pan ◽  
AC Guyton

This study was conducted to determine the quantitative importance of the aldosterone feedback mechanism in controlling each one of three major factors that have often been associated with aldosterone, namely, extracellular fluid sodium concentration, extracellular fluid potassium concentration, and extracellular fluid volume. To do this, the ability of the body to control these three factors in the face of marked changes in daily sodium or potassium intake was studied under two conditions: 1) in the normal dog, and 2) in the dog in which the aldosterone feedback mechanism was prevented from functioning by removing the adrenal glands and then providing a continuous fixed level of supportive aldosterone and glucocorticoids during the low and high electrolyte intake periods. Under these conditions, removal of feedback control of aldosterone secretion decreased the effectiveness of plasma potassium control by nearly fivefold (39% vs. 8% change in plasma potassium concentration), fluid volume by sixfold (12% vs. 2% change in sodium space) and had no effect on control of plasma sodium concentration (2% change with and without feedback control of aldosterone secretion.)


2019 ◽  
Vol 10 (1) ◽  
pp. 209 ◽  
Author(s):  
Nikita S. Pyko ◽  
Svetlana A. Pyko ◽  
Oleg A. Markelov ◽  
Oleg V. Mamontov ◽  
Mikhail I. Bogachev

Six different metrics of mutual coupling of simultaneously registered signals representing blood pressure and pulse interval dynamics have been considered. Stress test responses represented by the reaction of the recorded signals to the external input by tilting the body into the upright position have been studied. Additionally, to the conventional metrics like the joint signal coherence Coher and the sensitivity of the pulse intervals response to the blood pressure changes baroreflex sensitivity (BRS), also alternative indicators like the synchronization coefficient Sync and the time delay stability estimate TDS representing the temporal fractions of the analyzed signal records exhibiting rather synchronous dynamics have been determined. In contrast to BRS, that characterizes the intensity of the pulse intervals response to the blood pressure changes during observed feedback responses, both Sync and TDS likely indicate how often such responses are being activated in the first place. The results indicate that in most cases BRS is typically reciprocal to both Sync and TDS suggesting that low intensity of the feedback responses characterized by low BRS is rather compensated by their more frequent activation indicated by higher Sync and TDS. The proposed additional indicators could be complementary for the differential diagnostics of blood pressure regulation efficacy and also lead to a deeper insight into the involved concomitant factors this way also aiming at the improvement of the mathematical models representing the underlying feedback control mechanisms.


2013 ◽  
Vol 109 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Seyed A. Safavynia ◽  
Lena H. Ting

We hypothesized that motor outputs are hierarchically organized such that descending temporal commands based on desired task-level goals flexibly recruit muscle synergies that specify the spatial patterns of muscle coordination that allow the task to be achieved. According to this hypothesis, it should be possible to predict the patterns of muscle synergy recruitment based on task-level goals. We demonstrated that the temporal recruitment of muscle synergies during standing balance control was robustly predicted across multiple perturbation directions based on delayed sensorimotor feedback of center of mass (CoM) kinematics (displacement, velocity, and acceleration). The modulation of a muscle synergy's recruitment amplitude across perturbation directions was predicted by the projection of CoM kinematic variables along the preferred tuning direction(s), generating cosine tuning functions. Moreover, these findings were robust in biphasic perturbations that initially imposed a perturbation in the sagittal plane and then, before sagittal balance was recovered, perturbed the body in multiple directions. Therefore, biphasic perturbations caused the initial state of the CoM to differ from the desired state, and muscle synergy recruitment was predicted based on the error between the actual and desired upright state of the CoM. These results demonstrate that that temporal motor commands to muscle synergies reflect task-relevant error as opposed to sensory inflow. The proposed hierarchical framework may represent a common principle of motor control across motor tasks and levels of the nervous system, allowing motor intentions to be transformed into motor actions.


1985 ◽  
Vol 249 (5) ◽  
pp. R624-R633 ◽  
Author(s):  
F. H. Daniels ◽  
S. Cortell ◽  
E. F. Leonard

Numerous factors that influence sodium handling have been identified, and many have been studied in minute detail; however, relatively little information is available regarding either the steady-state relationship between dietary sodium intake and sodium stores or the transient response of intact animals to challenges to sodium homeostasis. In this paper the principles of elementary feedback control theory have been used both to obtain and analyze quantitative models of the feedback control of sodium stores. It has been assumed that the sodium content of the body determines the rate of urinary sodium excretion, and a mass balance has been used to obtain differential equations that describe the dynamics of sodium stores. Both first- and second-order models are considered, and their predictions for both steady states and transients are compared critically with observations from the literature, using data from human studies whenever possible. The results indicate that a relatively simple proportional feedback controller describes most available data well; however, gaps in the available information are identified, and opportunities for future experimental investigation are described.


2002 ◽  
Vol 14 (7) ◽  
pp. 1064-1075 ◽  
Author(s):  
Mairéad MacSweeney ◽  
Bencie Woll ◽  
Ruth Campbell ◽  
Gemma A. Calvert ◽  
Philip K. McGuire ◽  
...  

In all signed languages used by deaf people, signs are executed in “sign space” in front of the body. Some signed sentences use this space to map detailed “real-world” spatial relationships directly. Such sentences can be considered to exploit sign space “topographically.” Using functional magnetic resonance imaging, we explored the extent to which increasing the topographic processing demands of signed sentences was reflected in the differential recruitment of brain regions in deaf and hearing native signers of the British Sign Language. When BSL signers performed a sentence anomaly judgement task, the occipito-temporal junction was activated bilaterally to a greater extent for topographic than nontopo-graphic processing. The differential role of movement in the processing of the two sentence types may account for this finding. In addition, enhanced activation was observed in the left inferior and superior parietal lobules during processing of topographic BSL sentences. We argue that the left parietal lobe is specifically involved in processing the precise configuration and location of hands in space to represent objects, agents, and actions. Importantly, no differences in these regions were observed when hearing people heard and saw English translations of these sentences. Despite the high degree of similarity in the neural systems underlying signed and spoken languages, exploring the linguistic features which are unique to each of these broadens our understanding of the systems involved in language comprehension.


2006 ◽  
Vol 22 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Masashi Tsunoda ◽  
Yoshiharu Aizawa ◽  
Nobuhiro Konno ◽  
Kimiko Kimura ◽  
Yoshiko Sugita-Konishi

Tributyltin (TBT) compounds have been used as anti-fouling agents and the central nervous system is one of its target organs. TBT-induced modulations of neurotransmitters in the brains of adult mice have been reported. However, little is known about the developmental neurotoxicity of TBT. In this study, we evaluated the effects of TBT on neurotransmitters and their metabolites in discrete brain regions of female ICR mice and their offspring. Pregnant ICR mice were exposed to TBT chloride at concentrations of 0, 15 or 50 ppm in water or 125 ppm in food. Male offspring were sacrificed at one, two and three weeks after birth. The concentrations of norepinephrine, dopamine (DA), dihydoxyphenylacetic acid, homovanillic acid (HVA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) were determined in different brain regions by HPLC. All offspring from the 125 ppm group died immediately after birth. A significant decrease in the body weight of the TBT-treated F1 groups compared to the control group was observed in the first week. Significant increases compared to the controls were observed for the DA concentration in the striatum of the 50 ppm F1 group, and for the HVA concentration in the cerebrum and the 5-HT concentration in the medulla oblongata of the 15 and 50 ppm F1 groups in the third week. At three weeks of age, the neurotransmitters and their metabolites may be useful indexes for developmental neurotoxicity. For the dams, a significant decrease in the 5-HT concentration was observed in the cerebellum, medulla, midbrain and striatum of the 125 ppm group compared to the control group. A significant decrease in the 5-HIAA concentration was also observed in the cerebellum, midbrain and striatum of the dams in the 125 ppm group compared to the control. TBT may induce a decrease in the synthesis of 5-HT in the dams. The discrepancy between dams and offspring may be due to several factors such as age, dose, route, sex and pregnancy.


Sign in / Sign up

Export Citation Format

Share Document