PREDICTING SPEECH INTELLIGIBILITY FROM A SELECTIVE ATTENTION DECODING PARADIGM IN COCHLEAR IMPLANT USERS

2021 ◽  
Author(s):  
Waldo Nogueira ◽  
Hanna Dolhopiatenko

Objectives: Electroencephalography (EEG) can be used to decode selective attention in cochlear implant (CI) users. This work investigates if selective attention to an attended speech source in the presence of a concurrent speech source can predict speech understanding in CI users. Approach: CI users were instructed to attend to one out of two speech streams while EEG was recorded. Both speech streams were presented to the same ear and at different signal to interference ratios (SIRs). Speech envelope reconstruction of the to-be-attended speech from EEG was obtained by training decoders using regularized least squares. The correlation coefficient between the reconstructed and the attended (ρ_(A_SIR )) and between the reconstructed and the unattended (ρ_(U_SIR )) speech stream at each SIR was computed. Main Results: Selective attention decoding in CI users is possible even if both speech streams are presented monaurally. A significant effect of SIR on the correlation coefficient to the attended signal ρ_(A_SIR ), as well as on the difference correlation coefficients ρ_(A_SIR )-ρ_(U_SIR ) and ρ_(A_SIR )-ρ_(U_(-SIR) ) was observed, but not on the unattended correlation coefficient ρ_(U_SIR ). Finally, the results show a significant correlation between speech understanding performance and the correlation coefficients ρ_(A_SIR-) ρ_(U_SIR ) or -ρ_(U_SIR ) across subjects. Moreover, the difference correlation coefficient ρ_(A_SIR )-ρ_(U_(-SIR) ), which is less affected by the CI electrical artifact, presented a correlation trend with speech understanding performance. Significance: Selective attention decoding in CI users is possible, however care needs to be taken with the CI artifact and the speech material used to train the decoders. Even if only a small correlation trend between selective attention decoding and speech understanding was observed, these results are important for future development of objective speech understanding measures for CI users.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261295
Author(s):  
Florian Langner ◽  
Julie G. Arenberg ◽  
Andreas Büchner ◽  
Waldo Nogueira

Objectives The relationship between electrode-nerve interface (ENI) estimates and inter-subject differences in speech performance with sequential and simultaneous channel stimulation in adult cochlear implant listeners were explored. We investigated the hypothesis that individuals with good ENIs would perform better with simultaneous compared to sequential channel stimulation speech processing strategies than those estimated to have poor ENIs. Methods Fourteen postlingually deaf implanted cochlear implant users participated in the study. Speech understanding was assessed with a sentence test at signal-to-noise ratios that resulted in 50% performance for each user with the baseline strategy F120 Sequential. Two simultaneous stimulation strategies with either two (Paired) or three sets of virtual channels (Triplet) were tested at the same signal-to-noise ratio. ENI measures were estimated through: (I) voltage spread with electrical field imaging, (II) behavioral detection thresholds with focused stimulation, and (III) slope (IPG slope effect) and 50%-point differences (dB offset effect) of amplitude growth functions from electrically evoked compound action potentials with two interphase gaps. Results A significant effect of strategy on speech understanding performance was found, with Triplets showing a trend towards worse speech understanding performance than sequential stimulation. Focused thresholds correlated positively with the difference required to reach most comfortable level (MCL) between Sequential and Triplet strategies, an indirect measure of channel interaction. A significant offset effect (difference in dB between 50%-point for higher eCAP growth function slopes with two IPGs) was observed. No significant correlation was observed between the slopes for the two IPGs tested. None of the measures used in this study correlated with the differences in speech understanding scores between strategies. Conclusions The ENI measure based on behavioral focused thresholds could explain some of the difference in MCLs, but none of the ENI measures could explain the decrease in speech understanding with increasing pairs of simultaneously stimulated electrodes in processing strategies.


2002 ◽  
Vol 11 (2) ◽  
pp. 124-127 ◽  
Author(s):  
Robert V. Shannon

Speech understanding with cochlear implants has improved steadily over the last 25 years, and the success of implants has provided a powerful tool for understanding speech recognition in general. Comparing speech recognition in normal-hearing listeners and in cochlear-implant listeners has revealed many important lessons about the types of information necessary for good speech recognition—and some of the lessons are surprising. This paper presents a summary of speech perception research over the last 25 years with cochlear-implant and normal-hearing listeners. As long as the speech is audible, even the relatively severe amplitude distortion has only a mild effect on intelligibility. Temporal cues appear to be useful for speech intelligibility only up to about 20 Hz. Whereas temporal information above 20 Hz may contribute to improved quality, it contributes little to speech understanding. In contrast, the quantity and quality of spectral information appear to be critical for speech understanding. Only four spectral "channels" of information can produce good speech understanding, but more channels are required for difficult listening situations. Speech understanding is sensitive to the placement of spectral information along the cochlea. In prosthetic devices, in which the spectral information can be delivered to any cochlear location, it is critical to present spectral information to the normal acoustic tonotopic location for that information. If there is a shift or distortion of 2 to 3 mm between frequency and cochlear place, speech recognition is decreased dramatically.


2018 ◽  
Author(s):  
Ben Somers ◽  
Eline Verschueren ◽  
Tom Francart

AbstractObjectiveWhen listening to speech, the brain tracks the speech envelope. It is possible to reconstruct this envelope from EEG recordings. However, in people who hear using a cochlear implant (CI), the artifacts caused by electrical stimulation of the auditory nerve contaminate the EEG. This causes the decoder to produce an artifact-dominated reconstruction, which does not reflect the neural signal processing. The objective of this study is to develop and validate a method for assessing the neural tracking of speech envelope in CI users.ApproachTo obtain EEG recordings free of stimulus artifacts, the electrical stimulation is periodically in-terrupted. During these stimulation gaps, artifact-free EEG can be sampled and used to train a linear envelope decoder. Different recording conditions were used to characterize the artifacts and their influence on the envelope reconstruction.Main resultsThe present study demonstrates for the first time that neural tracking of the speech envelope can be measured in response to ongoing electrical stimulation. The responses were validated to be truly neural and not affected by stimulus artifact.SignificanceBesides applications in audiology and neuroscience, the characterization and elimination of stimulus artifacts will enable future EEG studies involving continuous speech in CI users. Measures of neural tracking of the speech envelope reflect interesting properties of the listener’s perception of speech, such as speech intelligibility or attentional state. Successful decoding of neural envelope tracking will open new possibilities to investigate the neural mechanisms of speech perception with a CI.


1986 ◽  
Vol 51 (4) ◽  
pp. 362-369 ◽  
Author(s):  
Donna M. Risberg ◽  
Robyn M. Cox

A custom in-the-ear (ITE) hearing aid fitting was compared to two over-the-ear (OTE) hearing aid fittings for each of 9 subjects with mild to moderately severe hearing losses. Speech intelligibility via the three instruments was compared using the Speech Intelligibility Rating (SIR) test. The relationship between functional gain and coupler gain was compared for the ITE and the higher rated OTE instruments. The difference in input received at the microphone locations of the two types of hearing aids was measured for 10 different subjects and compared to the functional gain data. It was concluded that (a) for persons with mild to moderately severe hearing losses, appropriately adjusted custom ITE fittings typically yield speech intelligibility that is equal to the better OTE fitting identified in a comparative evaluation; and (b) gain prescriptions for ITE hearing aids should be adjusted to account for the high-frequency emphasis associated with in-the-concha microphone placement.


2018 ◽  
Vol 11 (3) ◽  
pp. 306-316 ◽  
Author(s):  
Fernando Del Mando Lucchesi ◽  
Ana Claudia Moreira Almeida-Verdu ◽  
Deisy das Graças de Souza

Author(s):  
А. I. Grabovets ◽  
V. P. Kadushkina ◽  
S. А. Kovalenko

With the growing aridity of the climate on the Don, it became necessary to improve the methodology for conducting the  breeding of spring durum wheat. The main method of obtaining the source material remains intraspecific step hybridization. Crossings were performed between genetically distant forms, differing in origin and required traits and properties. The use of chemical mutagenesis was a productive way to change the heredity of genotypes in terms of drought tolerance. When breeding for productivity, both in dry years of research and in favorable years, the most objective markers were identified — the size of the aerial mass, the mass of grain per plant, spike, and harvest index. The magnitude of the correlation coefficients between the yield per unit area and the elements of its structure is established. It was most closely associated with them in dry years, while in wet years it decreased. Power the correlation of the characteristics of the pair - the grain yield per square meter - the aboveground biomass averaged r = 0.73, and in dry years it was higher (0.91) than in favorable ones (0.61 - 0.70) , between the harvest and the harvest index - r = 0.81 (on average). In dry years, the correlation coefficient increased to 0.92. Research data confirms the greatest importance of the mass of grain from one ear and the plant in the formation of grain yield per unit area in both dry and wet years. In dry years, the correlation coefficient between yield and grain mass per plant was on average r = 0.80; in favorable years, r = 0.69. The relationship between yield and grain mass from the ear was greater — r = 0.84 and r = 0.82, respectively. Consequently, the breeding significance of the aboveground mass and the productivity of the ear, as a criterion for the selection of the crop, especially increases in the dry years. They were basic in the selection.


Author(s):  
Yu Wang ◽  
Jiantao Wang ◽  
Haiping Wang ◽  
Xinyu Yang ◽  
Liming Chang ◽  
...  

Objective: Accurate assessment of breast tumor size preoperatively is important for the initial decision-making in surgical approach. Therefore, we aimed to compare efficacy of mammography and ultrasonography in ductal carcinoma in situ (DCIS) of breast cancer. Methods: Preoperative mammography and ultrasonography were performed on 104 women with DCIS of breast cancer. We compared the accuracy of each of the imaging modalities with pathological size by Pearson correlation. For each modality, it was considered concordant if the difference between imaging assessment and pathological measurement is less than 0.5cm. Results: At pathological examination tumor size ranged from 0.4cm to 7.2cm in largest diameter. For mammographically determined size versus pathological size, correlation coefficient of r was 0.786 and for ultrasonography it was 0.651. Grouped by breast composition, in almost entirely fatty and scattered areas of fibroglandular dense breast, correlation coefficient of r was 0.790 for mammography and 0.678 for ultrasonography; in heterogeneously dense and extremely dense breast, correlation coefficient of r was 0.770 for mammography and 0.548 for ultrasonography. In microcalcification positive group, coeffient of r was 0.772 for mammography and 0.570 for ultrasonography. In microcalcification negative group, coeffient of r was 0.806 for mammography and 0.783 for ultrasonography. Conclusion: Mammography was more accurate than ultrasonography in measuring the largest cancer diameter in DCIS of breast cancer. The correlation coefficient improved in the group of almost entirely fatty/ scattered areas of fibroglandular dense breast or in microcalcification negative group.


2020 ◽  
Author(s):  
Lieber Po-Hung Li ◽  
Ji-Yan Han ◽  
Wei-Zhong Zheng ◽  
Ren-Jie Huang ◽  
Ying-Hui Lai

BACKGROUND The cochlear implant technology is a well-known approach to help deaf patients hear speech again. It can improve speech intelligibility in quiet conditions; however, it still has room for improvement in noisy conditions. More recently, it has been proven that deep learning–based noise reduction (NR), such as noise classification and deep denoising autoencoder (NC+DDAE), can benefit the intelligibility performance of patients with cochlear implants compared to classical noise reduction algorithms. OBJECTIVE Following the successful implementation of the NC+DDAE model in our previous study, this study aimed to (1) propose an advanced noise reduction system using knowledge transfer technology, called NC+DDAE_T, (2) examine the proposed NC+DDAE_T noise reduction system using objective evaluations and subjective listening tests, and (3) investigate which layer substitution of the knowledge transfer technology in the NC+DDAE_T noise reduction system provides the best outcome. METHODS The knowledge transfer technology was adopted to reduce the number of parameters of the NC+DDAE_T compared with the NC+DDAE. We investigated which layer should be substituted using short-time objective intelligibility (STOI) and perceptual evaluation of speech quality (PESQ) scores, as well as t-distributed stochastic neighbor embedding to visualize the features in each model layer. Moreover, we enrolled ten cochlear implant users for listening tests to evaluate the benefits of the newly developed NC+DDAE_T. RESULTS The experimental results showed that substituting the middle layer (ie, the second layer in this study) of the noise-independent DDAE (NI-DDAE) model achieved the best performance gain regarding STOI and PESQ scores. Therefore, the parameters of layer three in the NI-DDAE were chosen to be replaced, thereby establishing the NC+DDAE_T. Both objective and listening test results showed that the proposed NC+DDAE_T noise reduction system achieved similar performances compared with the previous NC+DDAE in several noisy test conditions. However, the proposed NC+DDAE_T only needs a quarter of the number of parameters compared to the NC+DDAE. CONCLUSIONS This study demonstrated that knowledge transfer technology can help to reduce the number of parameters in an NC+DDAE while keeping similar performance rates. This suggests that the proposed NC+DDAE_T model may reduce the implementation costs of this noise reduction system and provide more benefits for cochlear implant users.


2010 ◽  
Vol 10 ◽  
pp. 329-339 ◽  
Author(s):  
Torsten Rahne ◽  
Michael Ziese ◽  
Dorothea Rostalski ◽  
Roland Mühler

This paper describes a logatome discrimination test for the assessment of speech perception in cochlear implant users (CI users), based on a multilingual speech database, the Oldenburg Logatome Corpus, which was originally recorded for the comparison of human and automated speech recognition. The logatome discrimination task is based on the presentation of 100 logatome pairs (i.e., nonsense syllables) with balanced representations of alternating “vowel-replacement” and “consonant-replacement” paradigms in order to assess phoneme confusions. Thirteen adult normal hearing listeners and eight adult CI users, including both good and poor performers, were included in the study and completed the test after their speech intelligibility abilities were evaluated with an established sentence test in noise. Furthermore, the discrimination abilities were measured electrophysiologically by recording the mismatch negativity (MMN) as a component of auditory event-related potentials. The results show a clear MMN response only for normal hearing listeners and CI users with good performance, correlating with their logatome discrimination abilities. Higher discrimination scores for vowel-replacement paradigms than for the consonant-replacement paradigms were found. We conclude that the logatome discrimination test is well suited to monitor the speech perception skills of CI users. Due to the large number of available spoken logatome items, the Oldenburg Logatome Corpus appears to provide a useful and powerful basis for further development of speech perception tests for CI users.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1163
Author(s):  
Suzana Shahar ◽  
Mohd Razif Shahril ◽  
Noraidatulakma Abdullah ◽  
Boekhtiar Borhanuddin ◽  
Mohd Arman Kamaruddin ◽  
...  

Measuring dietary intakes in a multi-ethnic and multicultural setting, such as Malaysia, remains a challenge due to its diversity. This study aims to develop and evaluate the relative validity of an interviewer-administered food frequency questionnaire (FFQ) in assessing the habitual dietary exposure of The Malaysian Cohort (TMC) participants. We developed a nutrient database (with 203 items) based on various food consumption tables, and 803 participants were involved in this study. The output of the FFQ was then validated against three-day 24-h dietary recalls (n = 64). We assessed the relative validity and its agreement using various methods, such as Spearman’s correlation, weighed Kappa, intraclass correlation coefficient (ICC), and Bland–Altman analysis. Spearman’s correlation coefficient ranged from 0.24 (vitamin C) to 0.46 (carbohydrate), and almost all nutrients had correlation coefficients above 0.3, except for vitamin C and sodium. Intraclass correlation coefficients ranged from −0.01 (calcium) to 0.59 (carbohydrates), and weighted Kappa exceeded 0.4 for 50% of nutrients. In short, TMC’s FFQ appears to have good relative validity for the assessment of nutrient intake among its participants, as compared to the three-day 24-h dietary recalls. However, estimates for iron, vitamin A, and vitamin C should be interpreted with caution.


Sign in / Sign up

Export Citation Format

Share Document