scholarly journals Discoidin domain receptor regulates ensheathment, survival, and caliber of peripheral axons

2021 ◽  
Author(s):  
Megan M. Corty ◽  
Alexandria P. Lassetter ◽  
Jo Q. Hill ◽  
Amy E. Sheehan ◽  
F. Javier Bernardo-Garcia ◽  
...  

Invertebrate axons and small caliber axons in mammalian peripheral nerves are unmyelinated but still ensheathed by glia. How this type of ensheathment is controlled and its roles in supporting neuronal function remain unclear. We performed an in vivo RNAi screen in Drosophila to identify glial genes required for axon ensheathment and identified the conserved receptor tyrosine kinase Discoidin domain receptor (Ddr). In larval peripheral nerves, loss of Ddr resulted in incomplete ensheathment of axons. We found a strong dominant genetic interaction between Ddr and the fly type XV/XVIII collagen Multiplexin (Mp), suggesting Ddr functions a collagen receptor to drive wrapping of axons during development. Surprisingly, while ablation of glia that wrap axons severely impaired larval motor behavior, incomplete wrapping in Ddr mutants was sufficient to support basic circuit function. In adult nerves, loss of Ddr from glia decreased long-term survival of sensory neurons and significantly reduced axon caliber without overtly affecting ensheathment. Our data establish a crucial role for non-myelinating glia in peripheral nerve development and function across the lifespan, and identify Ddr as a key regulator of axon-glia interactions during ensheathment.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3237-3237
Author(s):  
Carolina S. Berger ◽  
Michael Jensen ◽  
Stanley R. Riddell

Abstract The adoptive transfer of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) clones that have been isolated and expanded in vitro is a promising treatment modality for both human malignancies and infections. However, establishing immunity of sufficient magnitude and persistence for sustained efficacy is a limitation of this approach. Recent studies have identified a critical role for cytokine signaling including that mediated by IL15 in the establishment and maintenance of CD8+ T cell memory, suggesting that protocols for generating and transferring antigen-specific T cells might be improved. Interleukin-2 (IL2) is the T cell growth factor that has been widely used in vitro and in vivo for promoting T cell proliferation and persistence, but prolonged exposure of T cells to IL2 can enhance susceptibility to cell death and limit CD8+ memory T cell survival. IL15 is a novel cytokine that shares some activities with IL2 such as the induction of T cell proliferation, but exerts contrasting effects on the homeostasis of CD8+ T cell memory in experimental models. Here, we study the utility of IL15 to enhance the long-term survival and function of human and macaque antigen-specific CD8+ CTL clones in vitro. Human and macaque CD8+ CTL clones reactive against CMV were isolated by limiting dilution, expanded over 14 days in the presence of IL2 or IL15 (1–10 ng/ml), and then rested for >4 weeks in media alone and with IL2 or IL15 at 0.01–10 ng/ml. Surviving T cells were enumerated at intervals, monitored for cell surface phenotype, and assayed for cytotoxicity by chromium release assay. CTL expanded in IL2 or IL15 proliferated equivalently over 14 days with a median of 1100 and 1400 fold increase in number, displayed surface markers consistent with an effector memory phenotype (CD45RA−CD62L−CCR7−CD28−), and showed comparable cytotoxicity (n=4). However, exposure after 14 days to IL15 at doses as little as 0.05-0.1 ng/ml greatly enhanced the survival of the CD8+ CTL as determined by Annexin V staining. By contrast, cells cultured without cytokines or with IL2 declined >80% in number over 3 or 11 days, respectively. Of note, IL15 at higher doses (>0.5 ng/ml), but not IL2, efficiently promoted sustained cell growth illustrated by labeling cells with CFSE. Cells cultured with IL15 displayed 1.5-fold increased expression of antiapoptotic molecules such as Bcl-xL and Bcl-2 over those plated in IL2 (n=4), indicating IL15 mediated its effects at least in part by preventing apoptosis. Of note, the cytotoxicity of CTL rested in IL2 was markedly reduced (>60%, n=3), while the presence of IL15 permitted for sustained CTL function and expansion after restimulation. The responses of human and macaque CTL clones to IL15 were equivalent suggesting in vivo studies of T cell transfer in macaques may be predictive of results in humans. We have constructed retroviral vectors encoding intracytoplasmic truncated macaque CD34 or CD19 genes that could serve as nonimmunogenic selectable marker to track macaque T cells after transfer. Macaque T cells were efficiently transduced to express CD34t and CD19t (>50%), and enriched to high purity by immunomagnetic selection. Studies to examine the safety and utility of IL15 on the survival of adoptively transferred CTL in macaques are in progress. Collectively, our data support that novel cytokines such as IL15 may prove useful to augment the long-term survival and effector function of ex vivo expanded antigen-specific CD8+ CTL clones after transfer.


2019 ◽  
Vol 14 (7) ◽  
pp. 693-702 ◽  
Author(s):  
Charles C Lee ◽  
Naoki Hirasawa ◽  
Katrina G Garcia ◽  
Dinesh Ramanathan ◽  
Kee D Kim

Stem cells reside in their native microenvironment, which provides dynamic physical and chemical cues essential to their survival, proliferation and function. A typical cell-based therapeutic approach requires the mesenchymal stem cells (MSC) to depart their native microenvironment, transplant to in-vivo environment, differentiate toward multiple lineages and participate in bone formation. The long-term survival, function and fate of MSC are dependent on the microenvironment in which they are transplanted. Transplantation of morselized autologous bone, which contains both stem cells and their native microenvironment, results in a good clinical outcome. However, implantation of bone graft substitutes does not provide the complete and dynamic microenvironment for MSC. Current bone graft therapeutics may need to be improved further to provide an optimal engineered MSC microenvironment.


2019 ◽  
Vol 5 (7) ◽  
pp. eaaw5296 ◽  
Author(s):  
Yi Zhang ◽  
Aaron D. Mickle ◽  
Philipp Gutruf ◽  
Lisa A. McIlvried ◽  
Hexia Guo ◽  
...  

Studies of the peripheral nervous system rely on controlled manipulation of neuronal function with pharmacologic and/or optogenetic techniques. Traditional hardware for these purposes can cause notable damage to fragile nerve tissues, create irritation at the biotic/abiotic interface, and alter the natural behaviors of animals. Here, we present a wireless, battery-free device that integrates a microscale inorganic light-emitting diode and an ultralow-power microfluidic system with an electrochemical pumping mechanism in a soft platform that can be mounted onto target peripheral nerves for programmed delivery of light and/or pharmacological agents in freely moving animals. Biocompliant designs lead to minimal effects on overall nerve health and function, even with chronic use in vivo. The small size and light weight construction allow for deployment as fully implantable devices in mice. These features create opportunities for studies of the peripheral nervous system outside of the scope of those possible with existing technologies.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 866
Author(s):  
Luong Huu Dang ◽  
Yuan Tseng ◽  
How Tseng ◽  
Shih-Han Hung

In this study, we developed a new procedure for the rapid partial decellularization of the harvested trachea. Partial decellularization was performed using a combination of detergent and sonication to completely remove the epithelial layers outside of the cartilage ring. The post-decellularized tracheal segments were assessed with vital staining, which showed that the core cartilage cells remarkably remained intact while the cells outside of the cartilage were no longer viable. The ability of the decellularized tracheal segments to evade immune rejection was evaluated through heterotopic implantation of the segments into the chest muscle of rabbits without any immunosuppressive therapy, which demonstrated no evidence of severe rejection or tissue necrosis under H&E staining, as well as the mechanical stability under stress-pressure testing. Finally, orthotopic transplantation of partially decellularized trachea with no immunosuppression treatment resulted in 2 months of survival in two rabbits and one long-term survival (2 years) in one rabbit. Through evaluations of posttransplantation histology and endoscopy, we confirmed that our partial decellularization method could be a potential method of producing low-immunogenic cartilage scaffolds with viable, functional core cartilage cells that can achieve long-term survival after in vivo transplantation.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Peter Nordbeck ◽  
Leoni Bönhof ◽  
Karl-Heinz Hiller ◽  
Sabine Voll ◽  
Paula Arias ◽  
...  

Background: Surgical procedures in small animal models of heart disease, such as artificial ligation of the coronary arteries for experimental myocardial infarction, can evoke alterations in cardiac morphology and function. Such alterations might induce artificial early or long term effects in vivo that might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies in small animal models of heart disease. Methods: Female Wistar rats were matched for weight and distributed to sham left coronary artery ligation or untreated control. Cardiac parameters were then investigated in vivo by high-field MRI over time after the surgical procedure, determining left and right ventricular morphology and function. Additionally, the time course of several metabolic and inflammatory blood parameters was determined. Results: Rats after sham surgery showed a lower body weight for up to 8 weeks after the intervention compared to healthy controls. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in the sham operated rats compared to the controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed prolonged metabolic and inflammatory changes after surgery not related to cardiac disease. Conclusion: There is a small distinct impact of cardio-thoracic surgical procedures on the global integrity of the organism, which in the long term also includes circumscribed repercussions on cardiac morphology and function. This impact has to be considered when analyzing data from respective studies and transferring the findings to conditions in patients.


1996 ◽  
Vol 183 (6) ◽  
pp. 2523-2531 ◽  
Author(s):  
M López-Hoyos ◽  
R Carrió ◽  
R Merino ◽  
L Buelta ◽  
S Izui ◽  
...  

The bcl-2 protooncogene has been shown to provide a survival signal to self-reactive B cells, but it fails to override their developmental arrest after encounter with antigen. Furthermore, constitutive expression of bcl-2 in B cells does not promote the development of autoimmune disease in most strains of mice, indicating that signals other than those conferred by bcl-2 are required for long-term survival and differentiation of self-reactive B cells in vivo. To further examine the factors that are required for the pathogenesis of autoimmune disease, we have assessed the effect of bcl-2 overexpression on the development of host-versus-graft disease, a self-limited model of systemic autoimmune disease. In this model, injection of spleen cells from (C57BL/6 x BALB/c)F1 hybrid mice into BALB/c newborn parental mice induces immunological tolerance to donor tissues and activation of autoreactive F1 donor B cells through interactions provided by allogeneic host CD4+ T cells. BALB/c newborns injected with spleen cells from (C57BL/6 x BALB/c)F1 mice expressing a bcl-2 transgene in B cells developed high levels of anti-single-stranded DNA and a wide range of pathogenic autoantibodies that were not or barely detectable in mice injected with nontransgenic spleen cells. In mice injected with transgenic B cells, the levels of pathogenic autoantibodies remained high during the course of the study and were associated with long-term persistence of donor B cells, development of a severe autoimmune disease, and accelerated mortality. These results demonstrate that bcl-2 can provide survival signals for the maintenance and differentiation of autoreactive B cells, and suggest that both increased B cell survival and T cell help play critical roles in the development of certain forms of systemic autoimmune disease.


1995 ◽  
Vol 4 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Olle Lindvall

Cell transplantation is now being explored as a new therapeutic strategy to restore function in the diseased human central nervous system. Neural grafts show long-term survival and function in patients with Parkinson's disease but the symptomatic relief needs to be increased. Cell transplantation seems justified in patients with Huntington's disease and, at a later stage, possibly also in demyelinating disorders. The further development in this research field will require systematic studies in animal experiments but also well-designed clinical trials in small groups of patients.


2003 ◽  
Vol 124 (4) ◽  
pp. A736
Author(s):  
Meindert Sosef ◽  
Keishi Sugimachi ◽  
John Baust ◽  
Mehmet Toner

2019 ◽  
Vol 11 (487) ◽  
pp. eaao0750 ◽  
Author(s):  
Zheng-Zheng Zhang ◽  
You-Rong Chen ◽  
Shao-Jie Wang ◽  
Feng Zhao ◽  
Xiao-Gang Wang ◽  
...  

Reconstruction of the anisotropic structure and proper function of the knee meniscus remains an important challenge to overcome, because the complexity of the zonal tissue organization in the meniscus has important roles in load bearing and shock absorption. Current tissue engineering solutions for meniscus reconstruction have failed to achieve and maintain the proper function in vivo because they have generated homogeneous tissues, leading to long-term joint degeneration. To address this challenge, we applied biomechanical and biochemical stimuli to mesenchymal stem cells seeded into a biomimetic scaffold to induce spatial regulation of fibrochondrocyte differentiation, resulting in physiological anisotropy in the engineered meniscus. Using a customized dynamic tension-compression loading system in conjunction with two growth factors, we induced zonal, layer-specific expression of type I and type II collagens with similar structure and function to those present in the native meniscus tissue. Engineered meniscus demonstrated long-term chondroprotection of the knee joint in a rabbit model. This study simultaneously applied biomechanical, biochemical, and structural cues to achieve anisotropic reconstruction of the meniscus, demonstrating the utility of anisotropic engineered meniscus for long-term knee chondroprotection in vivo.


2007 ◽  
Vol 16 (8) ◽  
pp. 787-798 ◽  
Author(s):  
Hossein Arefanian ◽  
Eric B. Tredget ◽  
Ray V. Rajotte ◽  
Gregory S. Korbutt ◽  
Ron G. Gill ◽  
...  

Type 1 diabetes mellitus (T1DM) is caused by the autoimmune destruction of pancreatic islet β-cells, which are required for the production of insulin. Islet transplantation has been shown to be an effective treatment option for T1DM; however, the current shortage of human islet donors limits the application of this treatment to patients with brittle T1DM. Xenotransplantation of pig islets is a potential solution to the shortage of human donor islets provided xenograft rejection is prevented. We demonstrated that a short-term administration of a combination of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs) was highly effective in preventing rejection of neonatal porcine islet (NPI) xenografts in non-autoimmune-prone B6 mice. However, the efficacy of this therapy in preventing rejection of NPI xenografts in autoimmune-prone nonobese diabetic (NOD) mice is not known. Given that the current application of islet transplantation is for the treatment of T1DM, we set out to determine whether a combination of anti-LFA-1 and anti-CD154 mAbs could promote long-term survival of NPI xenografts in NOD mice. Short-term administration of a combination of anti-LFA-1 and anti-CD154 mAbs, which we found highly effective in preventing rejection of NPI xenografts in B6 mice, failed to promote long-term survival of NPI xenografts in NOD mice. However, addition of anti-CD4 mAb to short-term treatment of a combination of anti-LFA-1 and anti-CD154 mAbs resulted in xenograft function in 9/12 animals and long-term graft (>100 days) survival in 2/12 mice. Immunohistochemical analysis of islet grafts from these mice identified numerous insulin-producing β-cells. Moreover, the anti-porcine antibody as well as autoreactive antibody responses in these mice was reduced similar to those observed in naive nontransplanted mice. These data demonstrate that simultaneous targeting of LFA-1, CD154, and CD4 molecules can be effective in inducing long-term islet xenograft survival and function in autoimmune-prone NOD mice.


Sign in / Sign up

Export Citation Format

Share Document