scholarly journals Convolutional Neural Networks Using Enhanced Radiographs for Real-Time Detection of Sitophilus zeamais in Maize Grain

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 879
Author(s):  
Clíssia Barboza da Silva ◽  
Alysson Alexander Naves Silva ◽  
Geovanny Barroso ◽  
Pedro Takao Yamamoto ◽  
Valter Arthur ◽  
...  

The application of artificial intelligence (AI) such as deep learning in the quality control of grains has the potential to assist analysts in decision making and improving procedures. Advanced technologies based on X-ray imaging provide markedly easier ways to control insect infestation of stored products, regardless of whether the quality features are visible on the surface of the grains. Here, we applied contrast enhancement algorithms based on peripheral equalization and calcification emphasis on X-ray images to improve the detection of Sitophilus zeamais in maize grains. In addition, we proposed an approach based on convolutional neural networks (CNNs) to identity non-infested and infested classes using three different architectures; (i) Inception-ResNet-v2, (ii) Xception and (iii) MobileNetV2. In general, the prediction models developed based on the MobileNetV2 and Xception architectures achieved higher accuracy (≥0.88) in identifying non-infested grains and grains infested by maize weevil, with a correct classification from 0.78 to 1.00 for validation and test sets. Hence, the proposed approach using enhanced radiographs has the potential to provide precise control of Sitophilus zeamais for safe human consumption of maize grains. The proposed method can automatically recognize food contaminated with hidden storage pests without manual features, which makes it more reliable for grain inspection.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mundher Mohammed Taresh ◽  
Ningbo Zhu ◽  
Talal Ahmed Ali Ali ◽  
Asaad Shakir Hameed ◽  
Modhi Lafta Mutar

The novel coronavirus disease 2019 (COVID-19) is a contagious disease that has caused thousands of deaths and infected millions worldwide. Thus, various technologies that allow for the fast detection of COVID-19 infections with high accuracy can offer healthcare professionals much-needed help. This study is aimed at evaluating the effectiveness of the state-of-the-art pretrained Convolutional Neural Networks (CNNs) on the automatic diagnosis of COVID-19 from chest X-rays (CXRs). The dataset used in the experiments consists of 1200 CXR images from individuals with COVID-19, 1345 CXR images from individuals with viral pneumonia, and 1341 CXR images from healthy individuals. In this paper, the effectiveness of artificial intelligence (AI) in the rapid and precise identification of COVID-19 from CXR images has been explored based on different pretrained deep learning algorithms and fine-tuned to maximise detection accuracy to identify the best algorithms. The results showed that deep learning with X-ray imaging is useful in collecting critical biological markers associated with COVID-19 infections. VGG16 and MobileNet obtained the highest accuracy of 98.28%. However, VGG16 outperformed all other models in COVID-19 detection with an accuracy, F1 score, precision, specificity, and sensitivity of 98.72%, 97.59%, 96.43%, 98.70%, and 98.78%, respectively. The outstanding performance of these pretrained models can significantly improve the speed and accuracy of COVID-19 diagnosis. However, a larger dataset of COVID-19 X-ray images is required for a more accurate and reliable identification of COVID-19 infections when using deep transfer learning. This would be extremely beneficial in this pandemic when the disease burden and the need for preventive measures are in conflict with the currently available resources.


2021 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Ivan Lorencin ◽  
Sandi Baressi Šegota ◽  
Nikola Anđelić ◽  
Anđela Blagojević ◽  
Tijana Šušteršić ◽  
...  

COVID-19 represents one of the greatest challenges in modern history. Its impact is most noticeable in the health care system, mostly due to the accelerated and increased influx of patients with a more severe clinical picture. These facts are increasing the pressure on health systems. For this reason, the aim is to automate the process of diagnosis and treatment. The research presented in this article conducted an examination of the possibility of classifying the clinical picture of a patient using X-ray images and convolutional neural networks. The research was conducted on the dataset of 185 images that consists of four classes. Due to a lower amount of images, a data augmentation procedure was performed. In order to define the CNN architecture with highest classification performances, multiple CNNs were designed. Results show that the best classification performances can be achieved if ResNet152 is used. This CNN has achieved AUCmacro¯ and AUCmicro¯ up to 0.94, suggesting the possibility of applying CNN to the classification of the clinical picture of COVID-19 patients using an X-ray image of the lungs. When higher layers are frozen during the training procedure, higher AUCmacro¯ and AUCmicro¯ values are achieved. If ResNet152 is utilized, AUCmacro¯ and AUCmicro¯ values up to 0.96 are achieved if all layers except the last 12 are frozen during the training procedure.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Sobifagha Princess Bell-Gam ◽  
Luke Chinaru Nwosu ◽  
Kayode David Ileke ◽  
Uwaoma Otuodichinma Aguwa

Abstract Background The use of X-ray irradiation in the control of the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) infesting stored maize was tested at 60, 70 and 80 KeV as part of the international concerted efforts to save maize production and enhance food security. Investigations were done in the laboratory at mean temperature and relative humidity of 29.2 °C and 75.7%, respectively using three varieties of maize. The possibility that X-ray irradiation can affect the viability of maize grains when planted after weevil control process was also evaluated in the laboratory. Standard methods were used to achieve the specific objectives, and X-ray machine snap constituted the exposure time for each dose. Results The results revealed 10% mortality of adult weevils after 24 h and 40% mortality after a period of 7 days. The result indicates moderate effect on mortality. Progressive increase in mortality was recorded as dose increased from 60 to 80 KeV. X-ray irradiation at the doses tested did not significantly (P > 0.05) restrict S. zeamais emergence from maize grains and did not also significantly protect grains against damage and flour production. There was no difference in the pattern of daily emergence of new progenies and pattern of accumulated emergence. The relationship between X-ray irradiation doses and weight of emerging progenies require more specific analysis. Absence of significant difference between the viability of irradiated grains and un-irradiated grains strongly suggests that X-ray irradiation did not adversely affect seed viability, and this gives irradiation technique an opportunity of higher acceptability in agriculture. Conclusions We recommend > 80 KeV of X-ray irradiation or its incorporation into integrated pest management system in order to achieve effective post-harvest control of the pest.


2019 ◽  
Vol 38 (5) ◽  
pp. 1197-1206 ◽  
Author(s):  
Hojjat Salehinejad ◽  
Errol Colak ◽  
Tim Dowdell ◽  
Joseph Barfett ◽  
Shahrokh Valaee

Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 31
Author(s):  
Joaquim de Moura ◽  
Lucía Ramos ◽  
Plácido L. Vidal ◽  
Jorge Novo ◽  
Marcos Ortega

The new coronavirus (COVID-19) is a disease that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). On 11 March 2020, the coronavirus outbreak has been labelled a global pandemic by the World Health Organization. In this context, chest X-ray imaging has become a remarkably powerful tool for the identification of patients with COVID-19 infections at an early stage when clinical symptoms may be unspecific or sparse. In this work, we propose a complete analysis of separability of COVID-19 and pneumonia in chest X-ray images by means of Convolutional Neural Networks. Satisfactory results were obtained that demonstrated the suitability of the proposed system, improving the efficiency of the medical screening process in the healthcare systems.


Author(s):  
Sarah Badr AlSumairi ◽  
Mohamed Maher Ben Ismail

Pneumonia is an infectious disease of the lungs. About one third to one half of pneumonia cases are caused by bacteria. Early diagnosis is a critical factor for a successful treatment process. Typically, the disease can be diagnosed by a radiologist using chest X-ray images. In fact, chest X-rays are currently the best available method for diagnosing pneumonia. However, the recognition of pneumonia symptoms is a challenging task that relies on the availability of expert radiologists. Such “human” diagnosis can be inaccurate and subjective due to lack of clarity and erroneous decision. Moreover, the error can increase more if the physician is requested to analyze tens of X-rays within a short period of time. Therefore, Computer-Aided Diagnosis (CAD) systems were introduced to support and assist physicians and make their efforts more productive. In this paper, we investigate, design, implement and assess customized Convolutional Neural Networks to overcome the image-based Pneumonia classification problem. Namely, ResNet-50 and DenseNet-161 models were inherited to design customized deep network architecture and improve the overall pneumonia classification accuracy. Moreover, data augmentation was deployed and associated with standard datasets to assess the proposed models. Besides, standard performance measures were used to validate and evaluate the proposed system.


2021 ◽  
Author(s):  
Sandi Baressi Šegota ◽  
◽  
Simon Lysdahlgaard ◽  
Søren Hess ◽  
Ronald Antulov

The fact that Artificial Intelligence (AI) based algorithms exhibit a high performance on image classification tasks has been shown many times. Still, certain issues exist with the application of machine learning (ML) artificial neural network (ANN) algorithms. The best known is the need for a large amount of statistically varied data, which can be addressed with expanded collection or data augmentation. Other issues are also present. Convolutional neural networks (CNNs) show extremely high performance on image-shaped data. Despite their performance, CNNs exhibit a large issue which is the sensitivity to image orientation. Previous research shows that varying the orientation of images may greatly lower the performance of the trained CNN. This is especially problematic in certain applications, such as X-ray radiography, an example of which is presented here. Previous research shows that the performance of CNNs is higher when used on images in a single orientation (left or right), as opposed to the combination of both. This means that the data needs to be differentiated before it enters the classification model. In this paper, the CNN-based model for differentiation between left and right-oriented images is presented. Multiple CNNs are trained and tested, with the highest performing being the VGG16 architecture which achieved an Accuracy of 0.99 (+/- 0.01), and an AUC of 0.98 (+/- 0.01). These results show that CNNs can be used to address the issue of orientation sensitivity by splitting the data in advance of being used in classification models.


Sign in / Sign up

Export Citation Format

Share Document