scholarly journals A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans

2021 ◽  
Author(s):  
Priya Jaitly ◽  
Mélanie Legrand ◽  
Abhijit Das ◽  
Tejas Patel ◽  
Murielle Chauvel ◽  
...  

Chromosomal instability in fungal pathogens caused by cell division errors is associated with antifungal drug resistance. To identify mechanisms underlying such instability and to uncover new potential antifungal targets, we conducted an overexpression screen monitoring chromosomal stability in the human fungal pathogen Candida albicans. Analysis of ~1000 genes uncovered six chromosomal stability (CSA) genes, five of which are related to cell division genes in other organisms. The sixth gene, CSA6, is selectively present in the CUG-Ser clade species that includes C. albicans and other human fungal pathogens. The protein encoded by CSA6 localizes to the spindle pole bodies, is required for exit from mitosis, and induces a checkpoint-dependent metaphase arrest upon overexpression. Together, Csa6 defines an essential CUG-Ser fungal clade-specific cell cycle progression factor, highlighting the existence of phylogenetically-restricted cell division genes which may serve as potential unique therapeutic targets.

2021 ◽  
Author(s):  
Robert Sablowski ◽  
Crisanto Gutierrez

Abstract The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.


2008 ◽  
Vol 7 (9) ◽  
pp. 1460-1474 ◽  
Author(s):  
Racquel Kim Sherwood ◽  
Richard J. Bennett

ABSTRACT The kinesin-related protein Kar3 is a minus end-directed molecular motor that plays a multifunctional role in microtubule-directed nuclear movement. Previously, it was shown that Candida albicans Kar3p is critical for nuclear fusion during mating as kar3 mutants were defective in karyogamy. In this study, we confirm that Kar3p is required for nuclear congression in mating but that neither Kar3p nor the dynein motor protein Dyn1p is required for nuclear migration in the mating projection prior to cell fusion. In addition, we show that C. albicans Kar3p plays an important role in the cell and colony morphology of mitotically dividing cells, as evidenced by diminished filamentation of kar3 cells on Spider medium and an increased tendency of mutant cells to form pseudohyphal cells in liquid culture. Loss of Kar3p also led to defects in nuclear division, causing cells to grow slowly and exhibit reduced viability compared to wild-type cells. Slow growth was due, at least in part, to delayed cell cycle progression, as cells lacking Kar3p accumulated in anaphase of the cell cycle. Consistent with a role in mitotic division, Kar3 protein was shown to localize to the spindle pole bodies. Finally, kar3 cells exhibited unstable or aberrant mitotic spindles, a finding that accounts for the delay in cell cycle progression and decreased viability of these cells. We suggest that the altered morphology of kar3 cells is a direct consequence of the delay in anaphase, and this leads to increased polarized growth and pseudohypha formation.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


2021 ◽  
Vol 22 (11) ◽  
pp. 5483
Author(s):  
Luisa F. Bustamante-Jaramillo ◽  
Celia Ramos ◽  
Cristina Martín-Castellanos

Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.


2012 ◽  
Vol 80 (4) ◽  
pp. 1467-1478 ◽  
Author(s):  
Carolina Coelho ◽  
Lydia Tesfa ◽  
Jinghang Zhang ◽  
Johanna Rivera ◽  
Teresa Gonçalves ◽  
...  

ABSTRACTWe investigated the outcome of the interaction ofCryptococcus neoformanswith murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis ofC. neoformanspromoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis ofC. neoformanspromoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellularC. neoformansresidence that manifested itself in impaired cell cycle completion as a consequence of a block in the G2/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replicationin vivoand demonstrated that these cells are capable of low levels of cell division in the presence or absence ofC. neoformansinfection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect ofC. neoformansinfection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferationin vivo.


2021 ◽  
Vol 43 (3) ◽  
pp. 1436-1450
Author(s):  
Leonardo Vinícius Monteiro de Assis ◽  
Maria Nathália Moraes ◽  
Davi Mendes ◽  
Matheus Molina Silva ◽  
Carlos Frederico Martins Menck ◽  
...  

Skin melanocytes harbor a complex photosensitive system comprised of opsins, which were shown, in recent years, to display light- and thermo-independent functions. Based on this premise, we investigated whether melanopsin, OPN4, displays such a role in normal melanocytes. In this study, we found that murine Opn4KO melanocytes displayed a faster proliferation rate compared to Opn4WT melanocytes. Cell cycle population analysis demonstrated that OPN4KO melanocytes exhibited a faster cell cycle progression with reduced G0–G1, and highly increased S and slightly increased G2/M cell populations compared to the Opn4WT counterparts. Expression of specific cell cycle-related genes in Opn4KO melanocytes exhibited alterations that corroborate a faster cell cycle progression. We also found significant modification in gene and protein expression levels of important regulators of melanocyte physiology. PER1 protein level was higher while BMAL1 and REV-ERBα decreased in Opn4KO melanocytes compared to Opn4WT cells. Interestingly, the gene expression of microphthalmia-associated transcription factor (MITF) was upregulated in Opn4KO melanocytes, which is in line with a higher proliferative capability. Taken altogether, we demonstrated that OPN4 regulates cell proliferation, cell cycle, and affects the expression of several important factors of the melanocyte physiology; thus, arguing for a putative tumor suppression role in melanocytes.


2021 ◽  
Author(s):  
Anna Katharina Schlusche ◽  
Sabine Ulrike Vay ◽  
Niklas Kleinenkuhnen ◽  
Steffi Sandke ◽  
Rafael Campos-Martin ◽  
...  

ABSTRACTThe development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN)-channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN-channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN-channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a novel role for HCN-channel subunits as a part of a general mechanism influencing cortical development in mammals.Significance StatementImpaired cell cycle regulation of neural stem and progenitor cells can affect cortical development and cause microcephaly. During cell cycle progression, the cellular membrane potential changes through the activity of ion channels and tends to be more depolarized in proliferating cells. HCN channels, which mediate a depolarizing current in neurons and cardiac cells, are linked to neurodevelopmental diseases, also contribute to the control of cell-cycle progression and proliferation of neuronal precursor cells. In this study, HCN-channel deficiency during embryonic and fetal brain development resulted in marked microcephaly of mice designed to be deficient in HCN-channel function in dorsal forebrain progenitors. The findings suggest that HCN-channel subunits are part of a general mechanism influencing cortical development in mammals.


Sign in / Sign up

Export Citation Format

Share Document