scholarly journals Transoceanic voyages of drywood termites (Isoptera: Kalotermitidae) inferred from extant and extinct species

2021 ◽  
Author(s):  
Aleš Buček ◽  
Menglin Wang ◽  
Jan Šobotník ◽  
David Sillam-Dussès ◽  
Nobuaki Mizumoto ◽  
...  

Termites are major decomposers of organic matter in terrestrial ecosystems and the second most diverse lineage of social insects. The Kalotermitidae, the second-largest termite family, are widely distributed across tropical and subtropical ecosystems, where they typically live in small colonies confined to single wood items inhabited by individuals with no foraging abilities. How the Kalotermitidae have acquired their global distribution patterns remains unresolved. Similarly, it is unclear whether foraging is ancestral to Kalotermitidae or was secondarily acquired in a few species. These questions can be addressed in a phylogenetic framework. We inferred time-calibrated phylogenetic trees of Kalotermitidae using mitochondrial genomes and nuclear ribosomal RNA genes of ~120 species, about 27% of kalotermitid diversity, including representatives of 22 of the 23 kalotermitid genera. We found that extant kalotermitids shared a common ancestor 81 Mya (72-91 Mya 95% HPD), indicating that a few disjunctions among early-diverging kalotermitid lineages may predate Gondwana breakup. However, most of the ~40 disjunctions among biogeographic realms were dated at less than 50 Mya, indicating that transoceanic dispersals, and more recently human-mediated dispersals, have been the major drivers of the global distribution of Kalotermitidae. Our phylogeny also revealed that the capacity to forage is often found in early-diverging kalotermitid lineages, implying that the ancestors of Kalotermitidae were able to forage among multiple wood pieces. Our phylogenetic estimates provide a platform for a critical taxonomic revision of the family and for future comparative analyses of Kalotermitidae.

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
Zhenya Li ◽  
Xinxin Li ◽  
Nan Song ◽  
Huiji Tang ◽  
Xinming Yin

Carabidae are one of the most species-rich families of beetles, comprising more than 40,000 described species worldwide. Forty-three complete or partial mitochondrial genomes (mitogenomes) from this family have been published in GenBank to date. In this study, we sequenced a nearly complete mitogenome of Amara aulica (Carabidae), using a next-generation sequencing method. This mitogenome was 16,646 bp in length, which encoded the typical 13 mitochondrial protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a putative control region. Combining with the published mitogenomes of Carabidae and five outgroup species from Trachypachidae, Gyrinidae and Dytiscidae, we performed phylogenetic estimates under maximum likelihood and Bayesian inference criteria to investigate the phylogenetic relationships of carabid beetles. The results showed that the family Carabidae was a non-monophyletic assemblage. The subfamilies Cicindelinae, Elaphrinae, Carabinae, Trechinae and Harpalinae were recovered as monophyletic groups. Moreover, the clade (Trechinae + (Brachininae + Harpalinae)) was consistently recovered in all analyses.


2021 ◽  
pp. 80-84
Author(s):  
Barashkova ◽  
Budishcheva

The Calliphoridae family attracts many researchers in the phylogeny of myiasis in this family. Nevertheless, even after more than 50 years of research of the phylogenetic relationships among Calliphoridae subfamilies, the origin of myiasis remains unclear. By studying the peculiarities of the ecology of blue-green meat flies, and their adaptation to various habitats, it was found that the transition to facultative parasitism at the larval stage could occur in several ways, and was accompanied by the formation of viviparity. The larval parasitism of Calliphoridae on birds developed as a tendency of evolution. Larvae of the genus Protocalliphora, began feeding on blood of birds, and larvae of the species of the genus Trypocalliphora feed on the host tissues causing myiasis and the death of chicks. In order to elucidate the problem, we constructed three phylogenetic trees using nucleotide sequence data from cytochrome oxidase subunit one gene (COI), representing a mitochondrial conservative gene, and nuclear 28S subunit of ribosomal RNA gene (28S rRNA) in order to interpret the evolutionary profile of myiasis in the family Calliphoridae. Comparative analysis of the phylogenetic trees shows that the habit of obligatory myiasis originated independently more than five times among different calliphorid taxa in the course of evolutionary history. The inclusion of other myiasis-causing families (Oestridae, Gastrophilidae, and Sarcophagidae) along with fundamental life-history studies that deal with biology, physiology, feeding behavior and host specificity in addition to phylogenetic analysis could provide a more accurate answer to the origin of myiasis


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2699
Author(s):  
Joan Pere Pascual-Díaz ◽  
Sònia Garcia ◽  
Daniel Vitales

Plastid genomes are in general highly conserved given their slow evolutionary rate, and thus large changes in their structure are unusual. However, when specific rearrangements are present, they are often phylogenetically informative. Asteraceae is a highly diverse family whose evolution is long driven by polyploidy (up to 48x) and hybridization, both processes usually complicating systematic inferences. In this study, we generated one of the most comprehensive plastome-based phylogenies of family Asteraceae, providing information about the structure, genetic diversity and repeat composition of these sequences. By comparing the whole-plastome sequences obtained, we confirmed the double inversion located in the long single-copy region, for most of the species analyzed (with the exception of basal tribes), a well-known feature for Asteraceae plastomes. We also showed that genome size, gene order and gene content are highly conserved along the family. However, species representative of the basal subfamily Barnadesioideae—as well as in the sister family Calyceraceae—lack the pseudogene rps19 located in one inverted repeat. The phylogenomic analysis conducted here, based on 63 protein-coding genes, 30 transfer RNA genes and 21 ribosomal RNA genes from 36 species of Asteraceae, were overall consistent with the general consensus for the family’s phylogeny while resolving the position of tribe Senecioneae and revealing some incongruences at tribe level between reconstructions based on nuclear and plastid DNA data.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 710
Author(s):  
Heng Liang ◽  
Juan Chen

Zingibereae is a large tribe in the family Zingiberaceae, which contains plants with important medicinal, edible, and ornamental values. Although tribes of Zingiberaceae are well circumscribed, the circumscription of many genera within Zingibereae and the relationships among them remain elusive, especially for the genera of Boesenbergia, Curcuma, Kaempferia and Pyrgophyllum. In this study, we investigated the plastome variation in nine species representing five genera of Zingibereae. All plastomes showed a typical quadripartite structure with lengths ranging from 162,042 bp to 163,539 bp and contained 132–134 genes, consisting of 86–88 coding genes, 38 transfer RNA genes and eight ribosomal RNA genes. Moreover, the characteristics of the long repeats sequences and simple sequence repeats (SSRs) were detected. In addition, we conducted phylogenomic analyses of the Zingibereae and related taxa with plastomes data from additional 32 species from Genbank. Our results confirmed that Stahlianthus is closely related to Curcuma, supporting the idea of merging it into Curcuma. Kaempferia, Boesenbergia and Zingiber were confirmed as close relatives and grouped together as the Kaempferia group. Pyrgophyllum is not allied with the Curcuma clade but instead is embedded within the Hedychium clade. Our results demonstrate the power of plastid phylogenomics in improving the phylogenetic relationships within Zingibereae and provide a new insight into plastome evolution in Zingibereceae.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10007
Author(s):  
Jaehyun Kim ◽  
Eunjung Nam ◽  
Wonchoel Lee

We collected an undescribed laophontid copepod from a coarse sand habitat on the east coast of Korea and named it Quinquelaophonte enormis sp. nov. We compared the detailed morphological characteristics of the new species with those of congeneric species. Among them, the new species shows a superficial resemblance to the Californian species Quinquelaophonte longifurcata Lang, 1965. However, the two species are easily distinguishable by the setation of the syncoxa on the maxilliped and the fourth swimming leg. The new species has the variable setation on the second to fourth swimming legs. The variations appear among individuals or between the left and right rami of a pair of legs in a single specimen. Although complex chaetotaxical polymorphism occur in this new species, we used myCOI and Cytb to confirm that the new species is not a species complex. Also, partial sequences of 18S and 28S ribosomal RNA genes were used to analyze the position of the new species within the family Laophontidae. The new speciesis the fourteenth Quinquelaophonte species in the world and the second species in Korea.


Author(s):  
Joan Pere Pascual-Díaz ◽  
Sònia Garcia ◽  
Daniel Vitales

Plastid genomes are in general highly conserved given their slow evolutionary rate, thus large changes in their structure are unusual. However, when specific rearrangements are present, they are often phylogenetically informative. Asteraceae is a highly diverse family whose evolution is long driven by polyploidy (up to 48x) and hybridisation, both processes usually complicating systematic inferences. In this study, we have generated one of the most comprehensive plastome-based phylogenies of family Asteraceae, providing information about the structure, genetic diversity, and repeat composition of these sequences. By comparing the whole plastome sequences obtained, we confirmed the double inversion located in the long single copy region, for most of the species analysed (with the exception of basal tribes), a well-known feature for Asteraceae plastomes. We also show that genome size, gene order and gene content are highly conserved along the family. However, species representative of the basal subfamily Barnadesioideae -as well as in the sister family Calyceraceae - are lacking the pseudogene rps19 located in one inverted repeat. The phylogenomic analysis conducted here, based on 63 protein-coding genes, 30 transfer RNA genes and 21 ribosomal RNA genes from 36 species of Asteraceae, are overall consistent with the general consensus for the family’s phylogeny, while resolving the position of tribe Senecioneae and revealing some incongruences at tribe level between reconstructions based on nuclear and plastid DNA data.


Author(s):  
Dong-Bin Chen ◽  
Ru-Song Zhang ◽  
Xiang-Dong Jin ◽  
Jian Yang ◽  
Peng Li ◽  
...  

Abstract To explore the characteristics of the mitochondrial genome (mitogenome) of the squeaking silkmoths Rhodinia, a genus of wild silkmoths in the family Saturniidae of Lepidoptera, and reveal phylogenetic relationships, the mitogenome of Rhodinia fugax Butler was determined. This wild silkmoth spins a green cocoon that has potential significance in sericulture, and exhibits a unique feature that its larvae can squeak loudly when touched. The mitogenome of R. fugax is a circular molecule of 15,334 bp long and comprises 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and an A + T-rich region, consistent with previous observations of Saturniidae species. The 370-bp A + T-rich region of R. fugax contains no tandem repeat elements and harbors several features common to the Bombycidea insects, but microsatellite AT repeat sequence preceded by the ATTTA motif is not present. Mitogenome-based phylogenetic analysis shows that R. fugax belongs to Attacini, instead of Saturniini. This study presents the first mitogenome for Rhodinia genus.


2017 ◽  
Vol 22 (1) ◽  
pp. 91 ◽  
Author(s):  
Hironori Sakamoto ◽  
Tomoko Matsuda ◽  
Reiko Suzuki ◽  
Yutaka Saito ◽  
Jian-Zhen Lin ◽  
...  

The genus Stigmaeopsis (family Tetranychidae) has 11 species including the serious bamboo pest, S. nanjingensis. All Stigmaeopsis species are difficult to identify by their morphology, and the diagnostic character (the length of dorsal setae) can be used only to identify fresh specimens. To identify these species at the molecular level, we sequenced the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA and two nuclear ribosomal RNA genes (18S and 28S) of 20 strains of seven species of Stigmaeopsis [S. celarius, S. longus, S. miscanthi (both low- and high-aggression phenotypes), S. nanjingensis, S. tenuinidus, S. saharai and S. takahashii]. In maximum likelihood (ML) phylogenetic trees of both COI and combined 18S-28S genes, all but one Stigmaeopsis species could be identified as a monophyletic clade with high bootstrap values. The present results strongly suggested that the exceptional species, S. miscanthi, consists of three biologically different entities based on two phylogenetic trees. Though the phylogenetic trees did not comprehensively solve the phylogeny of Stigmaeopsis, a phylogenetic tree based on the combined nuclear genes showed a sibling relationship between two sub-social Stigmaeopsis species, S. miscanthi and S. longus. In addition, diagnostic PCR detected Wolbachia or Cardinium, which frequently affect mitochondrial haplotypes, in S. longus and S. nanjingensis. In the COI tree, S. longus was separated into two groups which were more consistent with their bacterial infection status than with their geographical distribution. 


Sign in / Sign up

Export Citation Format

Share Document