scholarly journals Enhanced Production of Mesencephalic Dopaminergic Neurons from Lineage-Restricted Human Undifferentiated Stem Cells

2021 ◽  
Author(s):  
Muyesier Maimaitili ◽  
Muwan Chen ◽  
Fabia Febbraro ◽  
Noëmie Mermet-Joret ◽  
Johanne Lauritsen ◽  
...  

The differentiation of human pluripotent stem cells (hPSCs) into mesencephalic dopaminergic (mesDA) neurons requires a precise combination of extrinsic factors that recapitulates the in vivo environment and timing. Current methods are capable of generating authentic mesDA neurons after long-term culture in vitro; however, when mesDA progenitors are transplanted in vivo, the resulting mesDA neurons are only minor components of the graft. This low yield hampers the broad use of these cells in the clinic. In this study, we genetically modified pluripotent stem cells to generate a novel type of stem cells called lineage-restricted undifferentiated stem cells (LR-USCs), which robustly generate mesDA neurons. LR-USCs are prevented from differentiating into a broad range of nondopaminergic cell types by knocking out genes that are critical for the specification of cells of alternate lineages. Specifically, we target transcription factors involved in the production of spinal cord and posterior hindbrain cell types. When LR-USCs are differentiated under caudalizing condition, which normally give rise to hindbrain cell types, a large proportion adopt a midbrain identity and develop into authentic mesDA neurons. We show that the mesDA neurons are electrophysiologically active, and due to their higher purity, are capable of restoring motor behavior eight weeks after transplantation into 6-hydroxydopamine (6-OHDA)-lesioned rats. This novel strategy improves the reliability and scalability of mesDA neuron generation for clinical use.

Author(s):  
Eszter Posfai ◽  
John Paul Schell ◽  
Adrian Janiszewski ◽  
Isidora Rovic ◽  
Alexander Murray ◽  
...  

AbstractTotipotency is the ability of a single cell to give rise to all the differentiated cells that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies upon a variety of assays of variable stringency. Here we describe criteria to define totipotency. We illustrate how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in the mouse, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbor increased totipotent potential relative to conventional embryonic stem cells under in vivo conditions.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sophie M Morgani ◽  
Jakob J Metzger ◽  
Jennifer Nichols ◽  
Eric D Siggia ◽  
Anna-Katerina Hadjantonakis

During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.


2017 ◽  
Author(s):  
Sophie M. Morgani ◽  
Jakob J. Metzger ◽  
Jennifer Nichols ◽  
Eric D. Siggia ◽  
Anna-Katerina Hadjantonakis

AbstractDuring gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.


2021 ◽  
Vol 22 (19) ◽  
pp. 10430
Author(s):  
Sacha Robert ◽  
Marcus Flowers ◽  
Brenda M. Ogle

Differentiation of pluripotent stem cells to cardiomyocytes is influenced by culture conditions including the extracellular matrices or similar synthetic scaffolds on which they are grown. However, the molecular mechanisms that link the scaffold with differentiation outcomes are not fully known. Here, we determined by immunofluorescence staining and mass spectrometry approaches that extracellular matrix (ECM) engagement by mouse pluripotent stem cells activates critical components of canonical wingless/integrated (Wnt) signaling pathways via kinases of the focal adhesion to drive cardiomyogenesis. These kinases were found to be differentially activated depending on type of ECM engaged. These outcomes begin to explain how varied ECM composition of in vivo tissues with development and in vitro model systems gives rise to different mature cell types, having broad practical applicability for the design of engineered tissues.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 876
Author(s):  
Raquel Bernad ◽  
Cian J. Lynch ◽  
Rocio G. Urdinguio ◽  
Camille Stephan-Otto Attolini ◽  
Mario F. Fraga ◽  
...  

Pluripotent stem cells can be stabilized in vitro at different developmental states by the use of specific chemicals and soluble factors. The naïve and primed states are the best characterized pluripotency states. Naïve pluripotent stem cells (PSCs) correspond to the early pre-implantation blastocyst and, in mice, constitute the optimal starting state for subsequent developmental applications. However, the stabilization of human naïve PSCs remains challenging because, after short-term culture, most current methods result in karyotypic abnormalities, aberrant DNA methylation patterns, loss of imprinting and severely compromised developmental potency. We have recently developed a novel method to induce and stabilize naïve human PSCs that consists in the simple addition of a chemical inhibitor for the closely related CDK8 and CDK19 kinases (CDK8/19i). Long-term cultured CDK8/19i-naïve human PSCs preserve their normal karyotype and do not show widespread DNA demethylation. Here, we investigate the long-term stability of allele-specific methylation at imprinted loci and the differentiation potency of CDK8/19i-naïve human PSCs. We report that long-term cultured CDK8/19i-naïve human PSCs retain the imprinting profile of their parental primed cells, and imprints are further retained upon differentiation in the context of teratoma formation. We have also tested the capacity of long-term cultured CDK8/19i-naïve human PSCs to differentiate into primordial germ cell (PGC)-like cells (PGCLCs) and trophoblast stem cells (TSCs), two cell types that are accessible from the naïve state. Interestingly, long-term cultured CDK8/19i-naïve human PSCs differentiated into PGCLCs with a similar efficiency to their primed counterparts. Also, long-term cultured CDK8/19i-naïve human PSCs were able to differentiate into TSCs, a transition that was not possible for primed PSCs. We conclude that inhibition of CDK8/19 stabilizes human PSCs in a functional naïve state that preserves imprinting and potency over long-term culture.


2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


2020 ◽  
Author(s):  
Engi Ahmed ◽  
Mathieu Fieldes ◽  
Chloé Bourguignon ◽  
Joffrey Mianné ◽  
Aurélie Petit ◽  
...  

AbstractRationaleHighly reproducible in vitro generation of human bronchial epithelium from pluripotent stem cells is an unmet key goal for drug screening to treat lung diseases. The possibility of using induced pluripotent stem cells (hiPSC) to model normal and diseased tissue in vitro from a simple blood sample will reshape drug discovery for chronic lung, monogenic and infectious diseases.MethodsWe devised a simple and reliable method that drives a blood sample reprogrammed into hiPSC subsequently differentiated within 45 days into air-liquid interface bronchial epithelium (iALI), through key developmental stages, definitive-endoderm (DE) and Ventralized-Anterior-Foregut-Endoderm (vAFE) cells.ResultsReprogramming blood cells from one healthy and 3 COPD patients, and from skin-derived fibroblasts obtained in one PCD patient, succeeded in 100% of samples using Sendai viruses. Mean cell purity at DE and vAFE stages was greater than 80%, assessed by expression of CXCR4 and NKX2.1, avoiding the need of cell sorting. When transferred to ALI conditions, vAFE cells reliably differentiated within 4 weeks into bronchial epithelium with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells as found in vivo. Benchmarking all culture conditions including hiPSCs adaptation to single-cell passaging, cell density and differentiation induction timing allowed for consistently producing iALI bronchial epithelium from the five hiPSC lines.ConclusionsReliable reprogramming and differentiation of blood-derived hiPSCs into mature and functional iALI bronchial epithelium is ready for wider use and this will allow better understanding lung disease pathogenesis and accelerating the development of novel gene therapies and drug discovery.


Sign in / Sign up

Export Citation Format

Share Document