scholarly journals Host diversity and behavior determine patterns of interspecies transmission and geographic diffusion of avian Influenza A subtypes among North American wild reservoir species

2021 ◽  
Author(s):  
Joseph T Hicks ◽  
Kimberly Friedman ◽  
Xueting Qiu ◽  
Do-Kyun Kim ◽  
James E Hixson ◽  
...  

Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies transmission and geographic diffusion patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of interspecies transmission were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of diffusion. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV.

2021 ◽  
Author(s):  
Bethany J. Hoye ◽  
Celeste M. Donato ◽  
Simeon Lisovski ◽  
Yi-Mo Deng ◽  
Simone Warner ◽  
...  

Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (Order Charadriiformes, Family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese and swans (Order Anseriformes, Family Anatidae) rarely undertake intercontinental migrations. Across a five-year surveillance period (2011–2015), Ruddy turnstones (Arenaria interpres) that ‘overwinter’ during the Austral summer in south eastern Australia showed generally low levels of AIV prevalence (0–2%). However, in March 2014 we detected AIVs in 32% (95% CI; 25–39%) of individuals in a small, low-density, island population 90km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian, recently introduced Eurasian, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900–1500km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania where Anatidae do not display regular inter- or intracontinental migration. IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of Ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting Australian wild birds are unlikely to be ecologically-isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the northern hemisphere.


2020 ◽  
Vol 94 (11) ◽  
Author(s):  
Yipeng Sun ◽  
Zhe Hu ◽  
Xuxiao Zhang ◽  
Mingyue Chen ◽  
Zhen Wang ◽  
...  

ABSTRACT In the 21st century, the emergence of H7N9 and H1N1/2009 influenza viruses, originating from animals and causing severe human infections, has prompted investigations into the genetic alterations required for cross-species transmission. We previously found that replacement of the human-origin PA gene segment in avian influenza virus (AIV) could overcome barriers to cross-species transmission. Recently, it was reported that the PA gene segment encodes both the PA protein and a second protein, PA-X. Here, we investigated the role of PA-X. We found that an H9N2 avian influenza reassortant virus bearing a human-origin H1N1/2009 PA gene was attenuated in mice after the loss of PA-X. Reverse genetics analyses of PA-X substitutions conserved in human influenza viruses indicated that R195K, K206R, and P210L substitutions conferred significantly increased replication and pathogenicity on H9N2 virus in mice and ferrets. PA-X R195K was present in all human H7N9 and H1N1/2009 viruses and predominated in human H5N6 viruses. Compared with PA-X 195R, H7N9 influenza viruses bearing PA-X 195K showed increased replication and transmission in ferrets. We further showed that PA-X 195K enhanced lung inflammatory responses, potentially due to decreased host shutoff function. A competitive transmission study in ferrets indicated that 195K provides a replicative advantage over 195R in H1N1/2009 viruses. In contrast, PA-X 195K did not influence the virulence of H9N2 AIV in chickens, suggesting that the effects of the substitution were mammal specific. Therefore, future surveillance efforts should scrutinize this region of PA-X because of its potential impact on cross-species transmission of influenza viruses. IMPORTANCE Four influenza pandemics in humans (the Spanish flu of 1918 [H1N1], the Asian flu of 1957 [H2N2], the Hong Kong flu of 1968 [H3N2], and the swine origin flu of 2009 [H1N1]) are all proposed to have been caused by avian or swine influenza viruses that acquired virulence factors through adaptive mutation or reassortment with circulating human viruses. Currently, influenza viruses circulating in animals are repeatedly transmitted to humans, posing a significant threat to public health. However, the molecular properties accounting for interspecies transmission of influenza viruses remain unclear. In the present study, we demonstrated that PA-X plays an important role in cross-species transmission of influenza viruses. At least three human-specific amino acid substitutions in PA-X dramatically enhanced the adaptation of animal influenza viruses in mammals. In particular, PA-X 195K might have contributed to cross-species transmission of H7N9, H5N6, and H1N1/2009 viruses from animal reservoirs to humans.


2001 ◽  
Vol 45 (4) ◽  
pp. 1216-1224 ◽  
Author(s):  
Irina A. Leneva ◽  
Olga Goloubeva ◽  
Robert J. Fenton ◽  
Margaret Tisdale ◽  
Robert G. Webster

ABSTRACT In 1997, an avian H5N1 influenza virus, A/Hong Kong/156/97 (A/HK/156/97), caused six deaths in Hong Kong, and in 1999, an avian H9N2 influenza virus infected two children in Hong Kong. These viruses and a third avian virus [A/Teal/HK/W312/97 (H6N1)] have six highly related genes encoding internal proteins. Additionally, A/Chicken/HK/G9/97 (H9N2) virus has PB1 and PB2 genes that are highly related to those of A/HK/156/97 (H5N1), A/Teal/HK/W312/97 (H6N1), and A/Quail/HK/G1/97 (H9N2) viruses. Because of their similarities with the H5N1 virus, these H6N1 and H9N2 viruses may have the potential for interspecies transmission. We demonstrate that these H6N1 and H9N2 viruses are pathogenic in mice but that their pathogenicities are less than that of A/HK/156/97 (H5N1). Unadapted virus replicated in lungs, but only A/HK/156/97 (H5N1) was found in the brain. After three passages (P3) in mouse lungs, the pathogenicity of the viruses increased, with both A/Teal/HK/W312/97 (H6N1) (P3) and A/Quail/HK/G1/97 (H9N2) (P3) viruses being found in the brain. The neuraminidase inhibitor zanamivir inhibited viral replication in Madin-Darby canine kidney cells in virus yield assays (50% effective concentration, 8.5 to 14.0 μM) and inhibited viral neuraminidase activity (50% inhibitory concentration, 5 to 10 nM). Twice daily intranasal administration of zanamivir (50 and 100 mg/kg of body weight) completely protected infected mice from death. At a dose of 10 mg/kg, zanamivir completely protected mice from infection with H9N2 viruses and increased the mean survival day and the number of survivors infected with H6N1 and H5N1 viruses. Zanamivir, at all doses tested, significantly reduced the virus titers in the lungs and completely blocked the spread of virus to the brain. Thus, zanamivir is efficacious in treating avian influenza viruses that can be transmitted to mammals.


2000 ◽  
Vol 74 (19) ◽  
pp. 9322-9327 ◽  
Author(s):  
Alexander I. Karasin ◽  
Ian H. Brown ◽  
Suzanne Carman ◽  
Christopher W. Olsen

ABSTRACT In October 1999, H4N6 influenza A viruses were isolated from pigs with pneumonia on a commercial swine farm in Canada. Phylogenetic analyses of the sequences of all eight viral RNA segments demonstrated that these are wholly avian influenza viruses of the North American lineage. To our knowledge, this is the first report of interspecies transmission of an avian H4 influenza virus to domestic pigs under natural conditions.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Jung-Hoon Kwon ◽  
Dong-Hun Lee ◽  
Miria Ferreira Criado ◽  
Lindsay Killmaster ◽  
Md Zulfekar Ali ◽  
...  

Abstract Asian lineage A/H5N1 highly pathogenic avian influenza viruses (HPAIVs) have been responsible for continuous outbreaks in Bangladesh since 2007. Although clades 2.2.2 and 2.3.4.2 HPAIVs have disappeared since poultry vaccination was introduced in 2012, clade 2.3.2.1a viruses have continued to be detected in Bangladesh. In this study, we identified A/H9N2 (n = 15), A/H5N1 (n = 19), and A/H5N1-A/H9N2 (n = 18) mixed viruses from live bird markets, chicken farms, and wild house crows (Corvus splendens) in Bangladesh from 2016 to 2018. We analyzed the genetic sequences of the H5 HPAIVs, to better understand the evolutionary history of clade 2.3.2.1a viruses in Bangladesh. Although seven HA genetic subgroups (B1–B7) and six genotypes (G1, G1.1, G1.2, G2, G2.1, and G2.2) have been identified in Bangladesh, only subgroup B7 and genotypes G2, G2.1, and G2.2 were detected after 2016. The replacement of G1 genotype by G2 in Bangladesh was possibly due to vaccination and viral competition in duck populations. Initially, genetic diversity decreased after introduction of vaccination in 2012, but in 2015, genetic diversity increased and was associated with the emergence of genotype G2. Our phylodynamic analysis suggests that domestic Anseriformes, including ducks and geese, may have played a major role in persistence, spread, evolution, and genotype replacement of clade 2.3.2.1a HPAIVs in Bangladesh. Thus, improvements in biosecurity and monitoring of domestic Anseriformes are needed for more effective control of HPAI in Bangladesh.


2020 ◽  
Vol 101 (9) ◽  
pp. 902-909
Author(s):  
Tao Zhang ◽  
Kai Fan ◽  
Xue Zhang ◽  
Yujuan Xu ◽  
Jian Xu ◽  
...  

The predominance of H5N6 in ducks and continuous human cases have heightened its potential threat to public health in China. Therefore, the detection of emerging variants of H5N6 avian influenza viruses has become a priority for pandemic preparedness. Questions remain as to its origin and circulation within the wild bird reservoir and interactions at the wild–domestic interface. Samples were collected from migratory birds in Poyang Lake, Jiangxi Province, PR China during the routine bird ring survey in 2014–16. Phylogenetic and coalescent analyses were conducted to uncover the evolutionary relationship among viruses circulating in wild birds. Here, we report the potential origin and phylogenetic diversity of H5N6 viruses isolated from wild birds in Poyang Lake. Sequence analyses indicated that Jiangxi H5N6 viruses most likely evolved from Eurasian-derived H5Nx and H6N6 viruses through multiple reassortment events. Crucially, the diversity of the HA gene implies that these Jiangxi H5N6 viruses have diverged into two primary clades − clade 2.3.4.4 and clade 2.3.2.1 c. Phylogenetic analysis revealed two independent pathways of reassortment during 2014–16 that might have facilitated the generation of emerging variants within wild bird populations as well as inter-species infections. Our findings contribute to our understanding of the genetic diversification of H5N6 viruses in the wild bird population. These results highlight the necessity of large-scale surveillance of wild birds in the Poyang Lake area to address the threat of regional epizootic epidemics and attendant pandemics.


Author(s):  
V. Yu. Marchenko ◽  
N. I. Goncharova ◽  
V. A. Evseenko ◽  
I. M. Susloparov ◽  
E. V. Gavrilova ◽  
...  

Analyzed was modern epidemiological situation on highly pathogenic avian flu in 2018. Prognosis for possible further distribution of viruses in the territory of Russia was made. In 2018, the situation on highly pathogenic avian flu in Russia was challenging. This was due to the spread of the viruses clade 2.3.4.4, which caused multiple outbreaks among wild birds and poultry in European part of Russia. In addition, A/H5N6 avian influenza virus circulation was for the first time detected in the Saratov Region during routine avian influenza virus surveillance. In May, 2018 two different lineages of avian influenza A/H9N2 were isolated during the outbreaks that occurred at several poultry plants in Primorsk Territory and Amur Region of Russia. Subsequently, that virus subtype continued spreading in Russia, which was recorded by detection of the A/H9N2 influenza virus in wild birds in the Khabarovsk and Tomsk Regions of Russia. Thus, it is shown yet again that the territory of Russia plays an  important geographical role in the spread of avian influenza viruses.


2014 ◽  
Vol 61 (3) ◽  
Author(s):  
Kinga Urbaniak ◽  
Andrzej Kowalczyk ◽  
Iwona Markowska-Daniel

Influenza A viruses (IAVs) are zoonotic agents, capable of crossing the species barriers. Nowadays, they still constitute a great challenge worldwide. The natural reservoir of all influenza A viruses are wild aquatic birds, despite the fact they have been isolated from a number of avian and mammalian species, including humans. Even when influenza A viruses are able to get into another than waterfowl population, they are often unable to efficiently adapt and transmit between individuals. Only in rare cases, these viruses are capable of establishing a new lineage. To succeed a complete adaptation and further transmission between species, influenza A virus must overcome a species barrier, including adaptation to the receptors of a new host, which would allow the virus-cell binding, virus replication and, then, animal-to-animal transmission. For many years, pigs were thought to be intermediate host for adaptation of avian influenza viruses to humans, because of their susceptibility to infection with both, avian and human influenza viruses, which supported hypothesis of pigs as a 'mixing vessel'. In this review, the molecular factors necessary for interspecies transmission are described, with special emphasis on adaptation of avian influenza viruses to the pig population. In addition, this review gives the information about swine influenza viruses circulating around the world with special emphasis on Polish strains.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Knut Madslien ◽  
Torfinn Moldal ◽  
Britt Gjerset ◽  
Sveinn Gudmundsson ◽  
Arne Follestad ◽  
...  

Abstract Background Several outbreaks of highly pathogenic avian influenza (HPAI) caused by influenza A virus of subtype H5N8 have been reported in wild birds and poultry in Europe during autumn 2020. Norway is one of the few countries in Europe that had not previously detected HPAI virus, despite widespread active monitoring of both domestic and wild birds since 2005. Results We report detection of HPAI virus subtype H5N8 in a wild pink-footed goose (Anser brachyrhynchus), and several other geese, ducks and a gull, from south-western Norway in November and December 2020. Despite previous reports of low pathogenic avian influenza (LPAI), this constitutes the first detections of HPAI in Norway. Conclusions The mode of introduction is unclear, but a northward migration of infected geese or gulls from Denmark or the Netherlands during the autumn of 2020 is currently our main hypothesis for the introduction of HPAI to Norway. The presence of HPAI in wild birds constitutes a new, and ongoing, threat to the Norwegian poultry industry, and compliance with the improved biosecurity measures on poultry farms should therefore be ensured. [MK1]Finally, although HPAI of subtype H5N8 has been reported to have very low zoonotic potential, this is a reminder that HPAI with greater zoonotic potential in wild birds may pose a threat in the future. [MK1]Updated with a sentence emphasizing the risk HPAI pose to poultry farms, both in the Abstract and in the Conclusion-section in main text, as suggested by Reviewer 1 (#7).


Sign in / Sign up

Export Citation Format

Share Document