scholarly journals Lamina cribrosa vessel and collagen beam networks are distinct

2021 ◽  
Author(s):  
Susannah Waxman ◽  
Bryn L Brazile ◽  
Bin Yang ◽  
Alexandra L Gogola ◽  
Po Lam ◽  
...  

Our goal was to analyze the spatial interrelation between vascular and collagen networks in the lamina cribrosa (LC). Specifically, we quantified the percentages of collagen beams with/without vessels and of vessels inside/outside of collagen beams. To do this, the vasculature of six normal monkey eyes was labelled by perfusion post-mortem. After enucleation, coronal cryosections through the LC were imaged using fluorescence and polarized light microscopy to visualize the blood vessels and collagen beams, respectively. The images were registered to form 3D volumes. Beams and vessels were segmented, and their spatial interrelationship was quantified in 3D. We found that 22% of the beams contained a vessel (range 14% to 32%), and 21% of vessels were outside beams (13% to 36%). Stated differently, 78% of beams did not contain a vessel (68% to 86%), and 79% of vessels were inside a beam (64% to 87%). Individual monkeys differed significantly in the fraction of vessels outside beams (p<0.01 by linear mixed effect analysis), but not in the fraction of beams with vessels (p>0.05). There were no significant differences between contralateral eyes in the percent of beams with vessels and of vessels outside beams (p>0.05). Our results show that the vascular and collagenous networks of the LC in monkey are clearly distinct, and the historical notions that each LC beam contains a vessel and all vessels are within beams are inaccurate. We postulate that vessels outside beams may be relatively more vulnerable to mechanical compression by elevated IOP than are vessels shielded inside of beams.

Author(s):  
Walter C. McCrone

An excellent chapter on this subject by V.D. Fréchette appeared in a book edited by L.L. Hench and R.W. Gould in 1971 (1). That chapter with the references cited there provides a very complete coverage of the subject. I will add a more complete coverage of an important polarized light microscope (PLM) technique developed more recently (2). Dispersion staining is based on refractive index and its variation with wavelength (dispersion of index). A particle of, say almandite, a garnet, has refractive indices of nF = 1.789 nm, nD = 1.780 nm and nC = 1.775 nm. A Cargille refractive index liquid having nD = 1.780 nm will have nF = 1.810 and nC = 1.768 nm. Almandite grains will disappear in that liquid when observed with a beam of 589 nm light (D-line), but it will have a lower refractive index than that liquid with 486 nm light (F-line), and a higher index than that liquid with 656 nm light (C-line).


2020 ◽  
Vol 43 (3) ◽  
pp. 289-321 ◽  
Author(s):  
Bror-Magnus S. Strand

AbstractThis paper investigates the variation in and development of a set of morphological variables in a register known to be used by Norwegian children when engaging in role play. In this register they code-switch to something resembling the standard or Oslo variety for their in-character role utterances. The variation across variables, subjects, and age is demonstrated and discussed, and although most variables are used in the standard variants, their rates vary. A fitted binomial generalised mixed effect analysis on the most frequent variables shows that the rate of standard variants increases significantly as an effect of age.


Author(s):  
Maryam Bari ◽  
Alexei A. Bokov ◽  
Zuo-Guang Ye

Polarized light microscopy reveals twin domains and symmetry of the phases in CH3NH3PbBr3 crystal; domain structure remains unresponsive to electric field but changes under external stress, confirming ferroelasticity while ruling out ferroelectricity.


1994 ◽  
Vol 2 (4) ◽  
pp. 16-16
Author(s):  
Walter C. McCrone

Having been brought up on monocular microscopes I find the omnipresent binocular systems a luxury. To support this viewpoint I'd like to suggest some benefits you may not have considered.Because I'm used to monocular viewing I sometimes use two different oculars, say 10X and 25X, in order to scan quickly to find an area of interest and then to examine the detail with higher magnification. Occasionally I use both oculars simultaneously and “concentrate” on either image to the exclusion of the other. A better way is to set the interocular distance at the extreme setting most different from your own interocular distance. By moving your head about a centimeter either way you can use either ocular.


Cartilage ◽  
2021 ◽  
pp. 194760352199088
Author(s):  
Hannah Mantebea ◽  
Syeda Batool ◽  
Mouhamad Hammami ◽  
Yang Xia

Objective In order to appreciate the roles articular cartilage of sesamoid bones and sesamoid fibrocartilage play in anatomy and pathology, the articular cartilage of the patella ( n = 4) and suprapatella ( n = 4) (a sesamoid fibrocartilage) of 12 to 14 weeks old New Zealand rabbits were studied qualitatively and quantitatively. Design/Method The intact knee joints and block specimens from the joints were imaged using microscopic magnetic resonance imaging (µMRI) at a 97.6-µm pixel resolution for the former and 19.5-µm resolution for the latter. Histological sections were made out of the µMRI-imaged specimens, which were imaged using polarized light microscopy (PLM) at 0.25-, 1-, and 4-µm pixel resolutions. Results The patella cartilage varied in thickness across the medial to lateral ends of the sesamoid bone with the central medial aspect slightly thicker than the lateral aspect. The suprapatella fibrocartilage decreased proximally away from the knee joint. Quantitative results of patellar cartilage showed strong dependence of fiber orientation with the tissue depth. Three histological zones can be clearly observed, which are similar to articular cartilage from other large animals. The sesamoid fibrocartilage has one thin surface layer (10 µm thick) of parallel-arranged structured fibers followed immediately by the majority of random fibers in bulk tissue. T2 relaxation time anisotropy was observed in the patellar cartilage but not in the bulk fibrocartilage. Conclusion Given the different functions of these 2 different types of cartilages in joint motion, these quantitative results will be beneficial to future studies of joint diseases using rabbits as the animal model.


Sign in / Sign up

Export Citation Format

Share Document