scholarly journals Increased Akkermansia abundance is associated with increased colonic mucosal ω-3 fatty acids and decreased colonic mucosal PGE2 concentrations following healthy dietary pattern interventions

Author(s):  
Samara Rifkin ◽  
Ananda Sen ◽  
Danielle Kim Turgeon ◽  
Rena Chan ◽  
Mack Ruffin ◽  
...  

Both increased dietary intake of ω-3 polyunsaturated fatty acids (PUFA) and subsequent increases in colonic mucosal ω-3 PUFA concentrations have been linked to improved gut barrier function and decreased risks of metabolic diseases and cancer. In addition, increased dietary ω-3 PUFA has been linked to eubiosis in mouse studies. Increased ω-3 PUFA function in part to reduce cyclooxygenase-(COX) mediated prostaglandin E2 (PGE2) production, a biomarker of cancer risk linked to compromised gut barrier function. We analyzed data from a dietary intervention study in individuals at increased risk of colon cancer to determine whether changes in the mucosal microbiome composition were associated with changes in colonic mucosal ω-3/ ω-6 PUFA ratio. Microbiome analyses of colonic biopsies before and after the dietary intervention from 86 participants were done by sequencing the V4 region of the 16S rRNA gene. Multivariable linear regression models were used to evaluate further whether changes in Akkermansia was associated with changes in each colonic tissue variable: ω-3/ω-6 PUFA ratios, PGE2 concentrations, and expression of COX-1 and COX-2. The median dietary intake and mucosal ω-3/ω-6 PUFA ratio increased after intervention. Greater increases in mucosal ω-3/ω-6 PUFA ratios after intervention were significantly associated with several changes in taxon abundance, including increased Akkermansia muciniphilia relative abundance. An increased abundance of Akkermansia muciniphilia also was associated significantly with decreased PGE2 concentrations but not with changes in COX expression. Further studies are warranted to elucidate mechanisms by which Akkermansia may affect or is affected by these pathways and the relative importance of individual dietary components.

Gut ◽  
1998 ◽  
Vol 42 (3) ◽  
pp. 396-401 ◽  
Author(s):  
F K S Welsh ◽  
S M Farmery ◽  
K MacLennan ◽  
M B Sheridan ◽  
G R Barclay ◽  
...  

Background—The integrity of the gastrointestinal mucosa is a key element in preventing systemic absorption of enteric toxins and bacteria. In the critically ill, breakdown of gut barrier function may fuel sepsis. Malnourished patients have an increased risk of postoperative sepsis; however, the effects of malnutrition on intestinal barrier function in man are unknown.Aims—To quantify intestinal barrier function, endotoxin exposure, and the acute phase cytokine response in malnourished patients.Patients—Malnourished and well nourished hospitalised patients.Methods—Gastrointestinal permeability was measured in malnourished patients and well nourished controls using the lactulose:mannitol test. Endoscopic biopsy specimens were stained and morphological and immunohistochemical features graded. The polymerase chain reaction was used to determine mucosal cytokine expression. The immunoglobulin G antibody response to endotoxin and serum interleukin 6 were measured by enzyme linked immunosorbent assay.Results—There was a significant increase in intestinal permeability in the malnourished patients in association with phenotypic and molecular evidence of activation of lamina propria mononuclear cells and enterocytes, and a heightened acute phase response.Conclusions—Intestinal barrier function is significantly compromised in malnourished patients, but the clinical significance is unclear.


2021 ◽  
Vol 250 (1) ◽  
pp. X1
Author(s):  
Marion Régnier ◽  
Matthias Van Hul ◽  
Claude Knauf ◽  
Patrice D Cani

2020 ◽  
Author(s):  
Marion Régnier ◽  
Matthias Van Hul ◽  
Claude Knauf ◽  
Patrice D Cani

Overweight and obesity are associated with several cardiometabolic risk factors, including insulin resistance, type 2 diabetes, low-grade inflammation and liver diseases. The gut microbiota is a potential contributing factor regulating energy balance. However, although the scientific community acknowledges that the gut microbiota composition and its activity (e.g., production of metabolites and immune-related compounds) are different between healthy subjects and subjects with overweight/obesity, the causality remains insufficiently demonstrated. The development of low-grade inflammation and related metabolic disorders has been connected with metabolic endotoxaemia and increased gut permeability. However, the mechanisms acting on the regulation of the gut barrier and eventually cardiometabolic disorders are not fully elucidated. In this review, we debate several characteristics of the gut microbiota, gut barrier function and metabolic outcomes. We examine the role of specific dietary compounds or nutrients (e.g., prebiotics, probiotics, polyphenols, sweeteners, and a fructose-rich diet) as well as different metabolites produced by the microbiota in host metabolism, and we discuss how they control several endocrine functions and eventually have either beneficial or deleterious effects on host health.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 324
Author(s):  
Minhong Ren ◽  
He Li ◽  
Zhen Fu ◽  
Quanyang Li

Dietary intervention could modulate age-related neurological disorders via the gut–brain axis. The potential roles of a probiotic and the dietary fiber complex (DFC) on brain and gut function in aged mice were investigated in this study. Lactobacillus casei LTL1361 and DFC were orally administrated for 12 weeks, and the learning and memory ability, as well as the oxidative parameters, inflammatory markers, gut barrier function and microbial metabolite short-chain fatty acids (SCFAs), were investigated. LTL1361 and DFC supplementation ameliorated cognitive ability, attenuated oxidative stress in brain and inflammation in serum and colon, ameliorated gut barrier function, and increased the SCFA concentrations and gene expression of SCFA receptors. The protective effect was more significantly enhanced in aged mice treated with the combination of LTL1361 and DFC than treated with LTL1361 or DFC alone. These results could be associated with the protected morphology of pyramidal nerve cells in hippocampus of mice brain and the downregulation of apoptosis marker caspase-3 in brain and upregulation of tight junction proteins in small intestine and colon. The results indicated that Lactobacillus casei LTL1361 and DFC alleviated age-related cognitive impairment, as well as protected brain and gut function. Lactobacillus casei LTL1361 and DFC might be used as novel and promising antiaging agents in human.


2011 ◽  
Vol 106 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Renata Barros ◽  
André Moreira ◽  
João Fonseca ◽  
Luís Delgado ◽  
M. Graça Castel-Branco ◽  
...  

As recently described, adherence to the Mediterranean diet is associated with improved asthma control. However, evidence of how specific nutrients such as fatty acids and antioxidants may affect this relationship remains largely unknown. We aimed to examine the association between dietary intake of fatty acids and antioxidants and asthma control. A cross-sectional study was developed in 174 asthmatics, mean age of 40 (sd 15) years. Dietary intake was obtained by a FFQ, and nutritional content was calculated using Food Processor Plus™ software (ESHA Research, Inc., Salem, OR, USA). Good asthma control was defined by the combination of forced expiratory volume during the first second, exhaled NO (eNO) and Asthma Control Questionnaire (ACQ) score (control: forced expiratory volume in the first second ≥ 80 %; eNO ≤ 35 ppb; ACQ < 1·0, scale 0–6 score). Multiple linear and logistic regression models were performed to analyse the associations between nutrients and asthma outcomes, adjusting for confounders. A high n-6:n-3 PUFA ratio predicted high eNO, whereas high intakes of n-3 PUFA, α-linolenic acid (ALA) and SFA were associated with low eNO. Odds for controlled asthma improved along with an increased intake of n-3 PUFA (OR 0·14, 95 % CI 0·04, 0·45; P for trend = 0·001), SFA (OR 0·36, 95 % CI 0·13, 0·97; P for trend = 0·047) and ALA (OR 0·18, 95 % CI 0·06, 0·58; P for trend = 0·005). A high n-6:n-3 PUFA ratio increased the odds for uncontrolled asthma (OR 3·69, 95 % CI 1·37, 9·94; P for trend = 0·009), after adjusting for energy intake, sex, age, education and use of inhaled corticosteroids. Higher intakes of n-3 PUFA, ALA and SFA were associated with good asthma control, while the risk for uncontrolled asthma increased with a higher n-6:n-3 PUFA ratio. The present results introduce a protective effect of ALA in asthma control, independent of marine n-3 fatty acids, and provide a rationale to dietary intervention studies in asthma.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1990-P ◽  
Author(s):  
SHIHO FUJISAKA ◽  
ISAO USUI ◽  
ALLAH NAWAZ ◽  
YOSHIKO IGARASHI ◽  
TOMONOBU KADO ◽  
...  

Shock ◽  
2011 ◽  
Vol 35 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Xiaofa Qin ◽  
Sharvil U. Sheth ◽  
Susan M. Sharpe ◽  
Wei Dong ◽  
Qi Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document