scholarly journals Loss of TBK1 activity leads to TDP-43 proteinopathy through lysosomal dysfunction in human motor neurons

2021 ◽  
Author(s):  
Jin Hao ◽  
Michael F Wells ◽  
Gengle Niu ◽  
Irune Guerra San Juan ◽  
Francesco Limone ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron loss accompanied by cytoplasmic localization of TDP-43 proteins and their insoluble accumulations. Haploinsufficiency of TBK1 has been found to associate with or cause ALS. However, the cell-autonomous mechanisms by which reduced TBK1 activity contributes to human motor neuron pathology remain elusive. Here, we generated a human cellular model harboring loss-of-function mutations of TBK1 by gene editing and found that TBK1 deficiency was sufficient to cause TDP-43 pathology in human motor neurons. In addition to its functions in autophagy, we found that TBK1 interacted with endosomes and was required for normal endosomal maturation and subsequent lysosomal acidification. Surprisingly, TDP-43 pathology resulted more from the dysfunctional endo-lysosomal pathway than the previously recognized autophagy inhibition mechanism. Restoring TBK1 levels ameliorated lysosomal dysfunction and TDP-43 pathology and maintained normal motor neuron homeostasis. Notably, using patient-derived motor neurons, we found that haploinsufficiency of TBK1 sensitized neurons to lysosomal stress, and chemical regulators of endosomal maturation rescued the neurodegenerative process. Together, our results revealed the mechanism of TBK1 in maintaining TDP-43 and motor neuron homeostasis and suggested that modulating endosomal maturation was able to rescue neurodegenerative disease phenotypes caused by TBK1 deficiency.

2019 ◽  
Vol 11 (523) ◽  
pp. eaav5264 ◽  
Author(s):  
Irit Reichenstein ◽  
Chen Eitan ◽  
Sandra Diaz-Garcia ◽  
Guy Haim ◽  
Iddo Magen ◽  
...  

Motor neuron–specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.


2021 ◽  
Author(s):  
Marina Duarte Gama Vieira ◽  
Anna Letícia Siqueira de Medeiros ◽  
Narayna Suellen Santos da Silva ◽  
Edlene Lima Ribeiro

Background: Amyotrophic lateral sclerosis is a rare neurodegenerative disease that acts on the upper and lower motor neurons, causing muscle weakness.¹²³Dysphagia occurs due to malfunction of the swallowing mechanisms and generates functional problems.⁴⁵⁶ Objectives: Describe the pathophysiology of dysphagia and discuss strategies for symptom relief. Design and setting: Systematic review, Faculdade Integrada Tiradentes, Jaboatão dos Guararapes - PE. Methods: Systematic review of 10 articles from the last years. Results: Dysarthria and dysphagia are common signs of upper motor neuron involvement and 80% of ALS cases exhibit asymmetric limb weakness.⁶ Conclusions: To improve the nutrition of patients with dysphagia, is suggested the use of supplements, changes in diet and food consistency, along with education on safe swallowing modes. Also percutaneous endoscopic gastrostomy can be used as an alternative. ⁷⁸⁹¹⁰


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Estela Area-Gomez ◽  
D. Larrea ◽  
T. Yun ◽  
Y. Xu ◽  
J. Hupf ◽  
...  

AbstractMotor neuron disorders (MND) include a group of pathologies that affect upper and/or lower motor neurons. Among them, amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle weakness, with fatal outcomes only in a few years after diagnosis. On the other hand, primary lateral sclerosis (PLS), a more benign form of MND that only affects upper motor neurons, results in life-long progressive motor dysfunction. Although the outcomes are quite different, ALS and PLS present with similar symptoms at disease onset, to the degree that both disorders could be considered part of a continuum. These similarities and the lack of reliable biomarkers often result in delays in accurate diagnosis and/or treatment. In the nervous system, lipids exert a wide variety of functions, including roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, the study of the absolute and relative concentrations of a subset of lipids in human pathology can shed light into these cellular processes and unravel alterations in one or more pathways. In here, we report the lipid composition of longitudinal plasma samples from ALS and PLS patients initially, and after 2 years following enrollment in a clinical study. Our analysis revealed common aspects of these pathologies suggesting that, from the lipidomics point of view, PLS and ALS behave as part of a continuum of motor neuron disorders.


2021 ◽  
Vol 11 (2) ◽  
pp. 160
Author(s):  
Mor R. Alkaslasi ◽  
Noell E. Cho ◽  
Navpreet K. Dhillon ◽  
Oksana Shelest ◽  
Patricia S. Haro-Lopez ◽  
...  

Traumatic brain injury (TBI) is a well-established risk factor for several neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease, however, a link between TBI and amyotrophic lateral sclerosis (ALS) has not been clearly elucidated. Using the SOD1G93A rat model known to recapitulate the human ALS condition, we found that exposure to mild, repetitive TBI lead ALS rats to experience earlier disease onset and shortened survival relative to their sham counterparts. Importantly, increased severity of early injury symptoms prior to the onset of ALS disease symptoms was linked to poor health of corticospinal motor neurons and predicted worsened outcome later in life. Whereas ALS rats with only mild behavioral injury deficits exhibited no observable changes in corticospinal motor neuron health and did not present with early onset or shortened survival, those with more severe injury-related deficits exhibited alterations in corticospinal motor neuron health and presented with significantly earlier onset and shortened lifespan. While these studies do not imply that TBI causes ALS, we provide experimental evidence that head injury is a risk factor for earlier disease onset in a genetically predisposed ALS population and is associated with poor health of corticospinal motor neurons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James C. Dodge ◽  
Jinlong Yu ◽  
S. Pablo Sardi ◽  
Lamya S. Shihabuddin

AbstractAberrant cholesterol homeostasis is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal neuromuscular disease that is due to motor neuron (MN) death. Cellular toxicity from excess cholesterol is averted when it is enzymatically oxidized to oxysterols and bile acids (BAs) to promote its removal. In contrast, the auto oxidation of excess cholesterol is often detrimental to cellular survival. Although oxidized metabolites of cholesterol are altered in the blood and CSF of ALS patients, it is unknown if increased cholesterol oxidation occurs in the SC during ALS, and if exposure to oxidized cholesterol metabolites affects human MN viability. Here, we show that in the SOD1G93A mouse model of ALS that several oxysterols, BAs and auto oxidized sterols are increased in the lumbar SC, plasma, and feces during disease. Similar changes in cholesterol oxidation were found in the cervical SC of sporadic ALS patients. Notably, auto-oxidized sterols, but not oxysterols and BAs, were toxic to iPSC derived human MNs. Thus, increased cholesterol oxidation is a manifestation of ALS and non-regulated sterol oxidation likely contributes to MN death. Developing therapeutic approaches to restore cholesterol homeostasis in the SC may lead to a treatment for ALS.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1865
Author(s):  
Nica Borgese ◽  
Nicola Iacomino ◽  
Sara Francesca Colombo ◽  
Francesca Navone

The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) membrane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the VAPs mediate a large number of processes, notably the generation of membrane contact sites between the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation (p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable, and its expression from a single allele appears to be insufficient to support toxic gain-of-function effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several basic cell physiological processes are affected by downregulation or complete depletion of VAPB, impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8 patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more common forms of the disease.


Contact ◽  
2021 ◽  
Vol 4 ◽  
pp. 251525642110225
Author(s):  
Nica Borgese ◽  
Francesca Navone ◽  
Nobuyuki Nukina ◽  
Tomoyuki Yamanaka

Nearly twenty years ago a mutation in the VAPB gene, resulting in a proline to serine substitution (p.P56S), was identified as the cause of a rare, slowly progressing, familial form of the motor neuron degenerative disease Amyotrophic Lateral Sclerosis (ALS). Since then, progress in unravelling the mechanistic basis of this mutation has proceeded in parallel with research on the VAP proteins and on their role in establishing membrane contact sites between the ER and other organelles. Analysis of the literature on cellular and animal models reviewed here supports the conclusion that P56S-VAPB, which is aggregation-prone, non-functional and unstable, is expressed at levels that are insufficient to support toxic gain-of-function or dominant negative effects within motor neurons. Instead, insufficient levels of the product of the single wild-type allele appear to be required for pathological effects, and may be the main driver of the disease. In light of the multiple interactions of the VAP proteins, we address the consequences of specific VAPB depletion and highlight various affected processes that could contribute to motor neuron degeneration. In the future, distinction of specific roles of each of the two VAP paralogues should help to further elucidate the basis of p.P56S familial ALS, as well as of other more common forms of the disease.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1449
Author(s):  
Cyril Quessada ◽  
Alexandra Bouscary ◽  
Frédérique René ◽  
Cristiana Valle ◽  
Alberto Ferri ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose–fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.


2019 ◽  
Vol 27 (4) ◽  
pp. 1369-1382 ◽  
Author(s):  
Honglin Tan ◽  
Mina Chen ◽  
Dejiang Pang ◽  
Xiaoqiang Xia ◽  
Chongyangzi Du ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. Improving neuronal survival in ALS remains a significant challenge. Previously, we identified Lanthionine synthetase C-like protein 1 (LanCL1) as a neuronal antioxidant defense gene, the genetic deletion of which causes apoptotic neurodegeneration in the brain. Here, we report in vivo data using the transgenic SOD1G93A mouse model of ALS indicating that CNS-specific expression of LanCL1 transgene extends lifespan, delays disease onset, decelerates symptomatic progression, and improves motor performance of SOD1G93A mice. Conversely, CNS-specific deletion of LanCL1 leads to neurodegenerative phenotypes, including motor neuron loss, neuroinflammation, and oxidative damage. Analysis reveals that LanCL1 is a positive regulator of AKT activity, and LanCL1 overexpression restores the impaired AKT activity in ALS model mice. These findings indicate that LanCL1 regulates neuronal survival through an alternative mechanism, and suggest a new therapeutic target in ALS.


Sign in / Sign up

Export Citation Format

Share Document