scholarly journals Epithelial-to-mesenchymal transition lowers the cholesterol pathway, wich influences colon tumors differentiation.

Author(s):  
Anais Aulas ◽  
Maria-Lucia Liberatoscioli ◽  
Pascal Finetti ◽  
Olivier Cabaud ◽  
David J Birnbaum ◽  
...  

Colorectal cancer (CRC) is the second cause of death worldwide. Up to 70% of CRC patients will metastasize at one point. Understanding the chain of events that lead to metastasis occurrence is urgent to identify new biomarkers of progression or new targets to prevent and delay disease evolution. Epithelial to mesenchymal transition (EMT) is a major program engaged during metastasis. EMT is extremely complex to analyze in situ due to the broad involvement of its transcription factors. We hypothesized that a relevant and dynamic in vitro model of pure cancer cells will reveal a combination of new genes that might further identify signs of EMT in cancer tissues. We treated HT-29 cells grown in 3D with an EMT-inducing factor, but also looked at reverse changes after EMT-inducing factor removal. For each condition, pan-transcriptomic analyses were done. Genes that were both induced upon EMT induction and inhibited upon EMT release (mesenchymal to epithelial transition or MET) were selected. Consistent with our hypothesis, we identified new genes for the EMT-MET programs. These genes were used to build a metagene that, when applied to a large database of transcriptomic data from primary colorectal tumors (n= 2,239), had an independent prognosis value. Finally, we submitted this metagene to CMap and identified drugs that might affect EMT-MET programs. Statins, well-known inhibitors of cholesterol synthesis, were among them and effectively delayed MET in vitro. These data show that cholesterol and EMT pathways are opposite regulators and impact differently tumors differentiation and outcome.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


2018 ◽  
Vol 30 (8) ◽  
pp. 1154 ◽  
Author(s):  
Anne-Laure Nivet ◽  
Isabelle Dufort ◽  
Isabelle Gilbert ◽  
Marc-André Sirard

In reproduction, FSH is one of the most important hormones, especially in females, because it controls the number of follicles and the rate of follicular growth. Although several studies have examined the follicular response at the transcriptome level, it is difficult to obtain a clear and complete picture of the genes responding to an increase in FSH in an in vivo context because follicles undergo rapid morphological and physical changes during their growth. To help define the transcriptome downstream response to FSH, an in vitro model was used in the present study to observe the short-term (4 h) cellular response. Gene expression analysis highlighted a set of novel transcripts that had not been reported previously as being part of the FSH response. Moreover, the results of the present study indicate that the epithelial to mesenchymal transition pathway is inhibited by short-term FSH stimuli, maintaining follicles in a growth phase and preventing differentiation. Modulating gene expression in vitro has physiological limitations, but it can help assess the potential downstream response and begin the mapping of the granulosa cell transcriptome in relation to FSH. This information is a key feature to help discriminate between the effects of FSH and LH, or to elucidate the overlapping of insulin-like growth factor 1 and FSH in the granulosa mitogenic response.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1381 ◽  
Author(s):  
Manuel Scimeca ◽  
Raffaella Giocondo ◽  
Manuela Montanaro ◽  
Annarita Granaglia ◽  
Rita Bonfiglio ◽  
...  

This study aims to investigate the possible different roles of the BMP-2 variants, cytoplasmic and nuclear variant, in both epithelial to mesenchymal transition and in microcalcifications origin in human breast cancers. To this end, the in situ expression of cytoplasmic and nuclear BMP-2 was associated with the expression of the main epithelial to mesenchymal transition biomarkers (e-cadherin and vimentin) and molecules involved in bone metabolisms (RUNX2, RANKL, SDF-1) by immunohistochemistry. In addition, the expression of cytoplasmic and nuclear BMP-2 was associated with the presence of microcalcifications. Our data showed a significant association among the number of cytoplasmic BMP-2-positive cells and the number of both vimentin (positive association) and e-cadherin (negative association) positive breast cells. Conversely, no associations were found concerning the nuclear BMP-2-positive breast cells. Surprisingly, the opposite result was obtained by analyzing the variants of BMP-2 and both the expression of RANKL and SDF-1 and the presence of microcalcifications. Specifically, the presence of microcalcifications was related to the expression of nuclear BMP-2 variant rather than the cytoplasmic one, as well as a strong association between the number of nuclear BMP-2 and the expression of the main breast osteoblast-like cells (BOLCs) biomarkers. To further corroborate these data, an in vitro experiment for demonstrating the co-expression of nBMP-2 and RANKL or vimentin or SDF-1 in breast cancer cells that acquire the capability to produce microcalcifications was developed. These investigations confirmed the association between the nBMP-2 expression and both RANKL and SDF-1. The data supports the idea that whilst cytoplasmic BMP-2 can be involved in epithelial to mesenchymal transition phenomenon, the nuclear variant is related to the essential mechanisms for the formation of breast microcalcifications. In conclusion, from these experimental and translational perspectives, the complexity of BMP-2 signaling will require a detailed understanding of the involvement of specific BMP-2 variants in breast cancers.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e17083 ◽  
Author(s):  
Elad Katz ◽  
Sylvie Dubois-Marshall ◽  
Andrew H. Sims ◽  
Philippe Gautier ◽  
Helen Caldwell ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2024
Author(s):  
Aikaterini F. Giannopoulou ◽  
Athanassios D. Velentzas ◽  
Athanasios K. Anagnostopoulos ◽  
Adamantia Agalou ◽  
Nikos C. Papandreou ◽  
...  

Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-β controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Li Geng ◽  
Zhongqiu Wang ◽  
Yongju Tian

Abstract Background Ovarian cancer is a common gynecological malignant disease in women. Our work aimed to study the specific functions of ZNF252P antisense RNA 1 (ZNF252P-AS1) in ovarian cancer. Methods ZNF252P-AS1, miR-324-3p, and lymphocyte antigen 6 family member K (LY6K) expression were analyzed by bioinformatics tools in ovarian cancer tissues and was quantified by qRT-PCR in ovarian cancer cells. The effect of ZNF252P-AS1 knockdown, miR-324-3p suppression, and LY6K over-expression on apoptosis, cell viability, invasion, migration, and epithelial to mesenchymal transition (EMT) was determined in vitro by using colony formation and EdU assays, flow cytometry, transwell assay, and Western blot. The interactions between ZNF252P-AS1 and miR-324-3p and between miR-324-3p and LY6K were validated by luciferase assays. The effects of restraining ZNF252P-AS1 in vivo were studied using BALB/c male nude mice. Results ZNF252P-AS1 and LY6K levels were up-regulated, while miR-324-3p was declined in ovarian cancer tissues and cells. ZNF252P-AS1 knockdown reduced ovarian cancer cell proliferation, invasion, migration, and EMT, whereas promoted its apoptosis. Besides, ZNF252P-AS1 interacted with miR-324-3p and reversely regulated its level, and miR-324-3p was directly bound to LY6K and negatively regulated its expression. Moreover, ZNF252P-AS1 knockdown reversed the effect of miR-324-3p on cancer cell apoptosis, growth, migration, invasion, and EMT. Similar results were discovered in the rescue experiments between miR-324-3p and LY6K. Additionally, mouse models in vivo experiments further validated that ZNF252P-AS1 knockdown distinctly inhibited tumor growth. Conclusion ZNF252P-AS1 mediated miR-324-3p/LY6K signaling to facilitate progression of ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document