scholarly journals Different brain systems support the aversive and appetitive sides of human pain-avoidance learning

2021 ◽  
Author(s):  
Marieke Jepma ◽  
Mathieu Roy ◽  
Kiran Ramlakhan ◽  
Monique van Velzen ◽  
Albert Dahan

Both unexpected pain and unexpected pain absence can drive avoidance learning, but whether they do so via shared or separate neural and neurochemical systems is largely unknown. To address this issue, we combined an instrumental pain-avoidance learning task with computational modeling, functional magnetic resonance imaging (fMRI) and pharmacological manipulations of the dopaminergic (100 mg levodopa) and opioidergic (50 mg naltrexone) systems (N=83). Computational modeling provided evidence that untreated participants learned more from received than avoided pain. Our dopamine and opioid manipulations negated this learning asymmetry by selectively increasing learning rates for avoided pain. Furthermore, our fMRI analyses revealed that pain prediction errors were encoded in subcortical and limbic brain regions, whereas no-pain prediction errors were encoded in frontal and parietal cortical regions. However, we found no effects of our pharmacological manipulations on the neural encoding of prediction errors. Together, our results suggest that human pain-avoidance learning is supported by separate threat- and safety-learning systems, and that dopamine and endogenous opioids specifically regulate learning from successfully avoided pain.

2018 ◽  
Author(s):  
Joanne C. Van Slooten ◽  
Sara Jahfari ◽  
Tomas Knapen ◽  
Jan Theeuwes

AbstractPupil responses have been used to track cognitive processes during decision-making. Studies have shown that in these cases the pupil reflects the joint activation of many cortical and subcortical brain regions, also those traditionally implicated in value-based learning. However, how the pupil tracks value-based decisions and reinforcement learning is unknown. We combined a reinforcement learning task with a computational model to study pupil responses during value-based decisions, and decision evaluations. We found that the pupil closely tracks reinforcement learning both across trials and participants. Prior to choice, the pupil dilated as a function of trial-by-trial fluctuations in value beliefs. After feedback, early dilation scaled with value uncertainty, whereas later constriction scaled with reward prediction errors. Our computational approach systematically implicates the pupil in value-based decisions, and the subsequent processing of violated value beliefs, ttese dissociable influences provide an exciting possibility to non-invasively study ongoing reinforcement learning in the pupil.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maëlle C. M. Gueguen ◽  
Alizée Lopez-Persem ◽  
Pablo Billeke ◽  
Jean-Philippe Lachaux ◽  
Sylvain Rheims ◽  
...  

AbstractWhether maximizing rewards and minimizing punishments rely on distinct brain systems remains debated, given inconsistent results coming from human neuroimaging and animal electrophysiology studies. Bridging the gap across techniques, we recorded intracerebral activity from twenty participants while they performed an instrumental learning task. We found that both reward and punishment prediction errors (PE), estimated from computational modeling of choice behavior, correlate positively with broadband gamma activity (BGA) in several brain regions. In all cases, BGA scaled positively with the outcome (reward or punishment versus nothing) and negatively with the expectation (predictability of reward or punishment). However, reward PE were better signaled in some regions (such as the ventromedial prefrontal and lateral orbitofrontal cortex), and punishment PE in other regions (such as the anterior insula and dorsolateral prefrontal cortex). These regions might therefore belong to brain systems that differentially contribute to the repetition of rewarded choices and the avoidance of punished choices.


2020 ◽  
Author(s):  
Maëlle CM Gueguen ◽  
Pablo Billeke ◽  
Jean-Philippe Lachaux ◽  
Sylvain Rheims ◽  
Philippe Kahane ◽  
...  

SummaryWhether maximizing rewards and minimizing punishments rely on distinct brain systems remains debated, inconsistent results coming from human neuroimaging and animal electrophysiology studies. Bridging the gap across species and techniques, we recorded intracerebral activity from twenty patients with epilepsy while they performed an instrumental learning task. We found that both reward and punishment prediction errors (PE), estimated from computational modeling of choice behavior, correlated positively with broadband gamma activity (BGA) in several brain regions. In all cases, BGA increased with both outcome (reward or punishment versus nothing) and surprise (how unexpected the outcome is). However, some regions (such as the ventromedial prefrontal and lateral orbitofrontal cortex) were more sensitive to reward PE, whereas others (such as the anterior insula and dorsolateral prefrontal cortex) were more sensitive to punishment PE. Thus, opponent systems in the human brain might mediate the repetition of rewarded choices and the avoidance of punished choices.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Moritz Herbert Albrecht Köhler ◽  
Gianpaolo Demarchi ◽  
Nathan Weisz

AbstractBackgroundA long-standing debate concerns where in the processing hierarchy of the central nervous system (CNS) selective attention takes effect. In the auditory system, cochlear processes can be influenced via direct and mediated (by the inferior colliculus) projections from the auditory cortex to the superior olivary complex (SOC). Studies illustrating attentional modulations of cochlear responses have so far been limited to sound-evoked responses. The aim of the present study is to investigate intermodal (audiovisual) selective attention in humans simultaneously at the cortical and cochlear level during a stimulus-free cue-target interval.ResultsWe found that cochlear activity in the silent cue-target intervals was modulated by a theta-rhythmic pattern (~ 6 Hz). While this pattern was present independently of attentional focus, cochlear theta activity was clearly enhanced when attending to the upcoming auditory input. On a cortical level, classical posterior alpha and beta power enhancements were found during auditory selective attention. Interestingly, participants with a stronger release of inhibition in auditory brain regions show a stronger attentional modulation of cochlear theta activity.ConclusionsThese results hint at a putative theta-rhythmic sampling of auditory input at the cochlear level. Furthermore, our results point to an interindividual variable engagement of efferent pathways in an attentional context that are linked to processes within and beyond processes in auditory cortical regions.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau9859 ◽  
Author(s):  
Michael J. Castle ◽  
Yuhsiang Cheng ◽  
Aravind Asokan ◽  
Mark H. Tuszynski

Several neurological disorders may benefit from gene therapy. However, even when using the lead vector candidate for intrathecal administration, adeno-associated virus serotype 9 (AAV9), the strength and distribution of gene transfer to the brain are inconsistent. On the basis of preliminary observations that standard intrathecal AAV9 infusions predominantly drive reporter gene expression in brain regions where gravity might cause cerebrospinal fluid to settle, we tested the hypothesis that counteracting vector “settling” through animal positioning would enhance vector delivery to the brain. When rats are either inverted in the Trendelenburg position or continuously rotated after intrathecal AAV9 infusion, we find (i) a significant 15-fold increase in the number of transduced neurons, (ii) a marked increase in gene delivery to cortical regions, and (iii) superior animal-to-animal consistency of gene expression. Entorhinal, prefrontal, frontal, parietal, hippocampal, limbic, and basal forebrain neurons are extensively transduced: 95% of transduced cells are neurons, and greater than 70% are excitatory. These findings provide a novel and simple method for broad gene delivery to the cortex and are of substantial relevance to translational programs for neurological disorders, including Alzheimer’s disease and related dementias, stroke, and traumatic brain injury.


2018 ◽  
Vol 44 (suppl_1) ◽  
pp. S281-S282
Author(s):  
Lilian Weber ◽  
Andreea Diaconescu ◽  
Sara Tomiello ◽  
Dario Schöbi ◽  
Sandra Iglesias ◽  
...  

2017 ◽  
Vol 23 (6) ◽  
pp. 594-600 ◽  
Author(s):  
FB Cabral ◽  
LH Castro-Afonso ◽  
GS Nakiri ◽  
LM Monsignore ◽  
SRC Fábio ◽  
...  

Purpose Hyper-attenuating lesions, or contrast staining, on a non-contrast brain computed tomography (NCCT) scan have been investigated as a predictor for hemorrhagic transformation after endovascular treatment of acute ischemic stroke (AIS). However, the association of hyper-attenuating lesions and final ischemic areas are poorly investigated in this setting. The aim of the present study was to assess correlations between hyper-attenuating lesions and final brain infarcted areas after thrombectomy for AIS. Methods Data from patients with AIS of the anterior circulation who underwent endovascular treatment were retrospectively assessed. Images of the brain NCCT scans were analyzed in the first hours and late after treatment. The hyper-attenuating areas were compared to the final ischemic areas using the Alberta Stroke Program Early CT Score (ASPECTS). Results Seventy-one of the 123 patients (65.13%) treated were included. The association between the hyper-attenuating region in the post-thrombectomy CT scan and final brain ischemic area were sensitivity (58.3% to 96.9%), specificity (42.9% to 95.6%), positive predictive values (71.4% to 97.7%), negative predictive values (53.8% to 79.5%), and accuracy values (68% to 91%). The highest sensitivity values were found for the lentiform (96.9%) and caudate nuclei (80.4%) and for the internal capsule (87.5%), and the lowest values were found for the M1 (58.3%) and M6 (66.7%) cortices. Conclusions Hyper-attenuating lesions on head NCCT scans performed after endovascular treatment of AIS may predict final brain infarcted areas. The prediction appears to be higher in the deep brain regions compared with the cortical regions.


2013 ◽  
Vol 7 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Dong Seok Yi ◽  
Maxime Bertoux ◽  
Eneida Mioshi ◽  
John R. Hodges ◽  
Michael Hornberger

ABSTRACT Behavioural disturbances in frontotemporal dementia (FTD) are thought to reflect mainly atrophy of cortical regions. Recent studies suggest that subcortical brain regions, in particular the striatum, are also significantly affected and this pathology might play a role in the generation of behavioural symptoms. Objective: To investigate prefrontal cortical and striatal atrophy contributions to behavioural symptoms in FTD. Methods: One hundred and eighty-two participants (87 FTD patients, 39 AD patients and 56 controls) were included. Behavioural profiles were established using the Cambridge Behavioural Inventory Revised (CBI-R) and Frontal System Behaviour Scale (FrSBe). Atrophy in prefrontal (VMPFC, DLPFC) and striatal (caudate, putamen) regions was established via a 5-point visual rating scale of the MRI scans. Behavioural scores were correlated with atrophy rating scores. Results: Behavioural and atrophy ratings demonstrated that patients were significantly impaired compared to controls, with bvFTD being most severely affected. Behavioural-anatomical correlations revealed that VMPFC atrophy was closely related to abnormal behaviour and motivation disturbances. Stereotypical behaviours were associated with both VMPFC and striatal atrophy. By contrast, disturbance of eating was found to be related to striatal atrophy only. Conclusion: Frontal and striatal atrophy contributed to the behavioural disturbances seen in FTD, with some behaviours related to frontal, striatal or combined fronto-striatal pathology. Consideration of striatal contributions to the generation of behavioural disturbances should be taken into account when assessing patients with potential FTD.


Sign in / Sign up

Export Citation Format

Share Document