scholarly journals Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer

2021 ◽  
Author(s):  
Zhi Yang ◽  
Kim-Marie A. Dam ◽  
Michael D. Bridges ◽  
Magnus A.G. Hoffmann ◽  
Andrew T. DeLaitsch ◽  
...  

Broadly-neutralizing antibodies (bNAbs) against HIV-1 Env can protect from infection. We characterized Ab1303 and Ab1573, neutralizing CD4-binding site (CD4bs) antibodies, isolated from sequentially-immunized macaques. Ab1303/Ab1573 binding was observed only when Env trimers were not constrained in the closed, prefusion conformation. Fab-Env cryo-EM structures showed that both antibodies recognized the CD4bs on Env trimer with an occluded-open conformation between closed, as targeted by bNAbs, and fully-open, as recognized by CD4. The occluded-open Env trimer conformation included outwardly-rotated gp120 subunits, but unlike CD4-bound Envs, did not exhibit V1V2 displacement, co-receptor binding site exposure, or a 4-stranded gp120 bridging sheet. Inter-protomer distances within trimers measured by double electron-electron resonance spectroscopy suggested an equilibrium between occluded-open and closed Env conformations, consistent with Ab1303/Ab1573 binding stabilizing an existing conformation. Studies of Ab1303/Ab1573 demonstrate that CD4bs neutralizing antibodies that bind open Env trimers can be raised by immunization, thereby informing immunogen design and antibody therapeutic efforts.

2012 ◽  
Vol 209 (8) ◽  
pp. 1469-1479 ◽  
Author(s):  
Florian Klein ◽  
Christian Gaebler ◽  
Hugo Mouquet ◽  
D. Noah Sather ◽  
Clara Lehmann ◽  
...  

Two to three years after infection, a fraction of HIV-1–infected individuals develop serologic activity that neutralizes most viral isolates. Broadly neutralizing antibodies that recognize the HIV-1 envelope protein have been isolated from these patients by single-cell sorting and by neutralization screens. Here, we report a new method for anti–HIV-1 antibody isolation based on capturing single B cells that recognize the HIV-1 envelope protein expressed on the surface of transfected cells. Although far less efficient than soluble protein baits, the cell-based capture method identified antibodies that bind to a new broadly neutralizing epitope in the vicinity of the V3 loop and the CD4-induced site (CD4i). The new epitope is expressed on the cell surface form of the HIV-1 spike, but not on soluble forms of the same envelope protein. Moreover, the new antibodies complement the neutralization spectrum of potent broadly neutralizing anti-CD4 binding site (CD4bs) antibodies obtained from the same individual. Thus, combinations of potent broadly neutralizing antibodies with complementary activity can account for the breadth and potency of naturally arising anti–HIV-1 serologic activity. Therefore, vaccines aimed at eliciting anti–HIV-1 serologic breadth and potency should not be limited to single epitopes.


2012 ◽  
Vol 86 (10) ◽  
pp. 5844-5856 ◽  
Author(s):  
X. Wu ◽  
C. Wang ◽  
S. O'Dell ◽  
Y. Li ◽  
B. F. Keele ◽  
...  

2012 ◽  
Vol 86 (22) ◽  
pp. 12105-12114 ◽  
Author(s):  
S. M. O'Rourke ◽  
B. Schweighardt ◽  
P. Phung ◽  
K. A. Mesa ◽  
A. L. Vollrath ◽  
...  

2018 ◽  
Author(s):  
Gwo-Yu Chuang ◽  
Jing Zhou ◽  
Reda Rawi ◽  
Chen-Hsiang Shen ◽  
Zizhang Sheng ◽  
...  

HIV-1 broadly neutralizing antibodies are desired for their therapeutic potential and as templates for vaccine design. Such antibodies target the HIV-1-envelope (Env) trimer, which is shielded from immune recognition by extraordinary glycosylation and sequence variability. Recognition by broadly neutralizing antibodies thus provides insight into how antibody can bypass these immune-evasion mechanisms. Remarkably, antibodies neutralizing >25% of HIV-1 strains have now been identified that recognize all major exposed surfaces of the prefusion-closed Env trimer. Here we analyzed all 206 broadly neutralizing antibody-HIV-1 Env complexes in the PDB with resolution suitable to define their interaction chemistries. These segregated into 20 antibody classes based on ontogeny and recognition, and into 6 epitope categories (V1V2, glycan-V3, CD4-binding site, silent face center, fusion peptide, and subunit interface) based on recognized Env residues. We measured antibody neutralization on a 208-isolate panel and analyzed features of paratope and B cell ontogeny. The number of protruding loops, CDR H3 length, and level of somatic hypermutation for broadly HIV-1 neutralizing antibodies were significantly higher than for a comparison set of non-HIV-1 antibodies. For epitope, the number of independent sequence segments was higher (P < 0.0001), as well as the glycan component surface area (P = 0.0005). Based on B cell ontogeny, paratope, and breadth, the CD4-binding site antibody IOMA appeared to be a promising candidate for lineage-based vaccine design. In terms of epitope-based vaccine design, antibody VRC34.01 had few epitope segments, low epitope-glycan content, and high epitope-conformational variability, which may explain why VRC34.01-based design is yielding promising vaccine results.


2021 ◽  
Author(s):  
Qingbo Liu ◽  
Peng Zhang ◽  
Huiyi Miao ◽  
Yin Lin ◽  
Young Do Kwon ◽  
...  

Broadly neutralizing antibodies (bNAbs) are the focus of increasing interest for human immunodeficiency virus type-1 (HIV-1) prevention and treatment. Although several bNAbs are already under clinical evaluation, the development of antibodies with even greater potency and breadth remains a priority. Recently, we reported a novel strategy for improving bNAbs against the CD4-binding site (CD4bs) of gp120 by engraftment of the elongated framework region 3 (FR3) from VRC03, which confers the ability to establish quaternary interactions with a second gp120 protomer. Here, we applied this strategy to a new series of anti-CD4bs bNAbs (N49 lineage) that already possess high potency and breadth. The resultant chimeric antibodies bind the HIV-1 envelope (Env) trimer with a higher affinity than their parental forms. Likewise, their neutralizing capacity against a global panel of HIV-1 Envs is also increased. The introduction of additional modifications further improved the neutralization potency. We also tried engrafting the elongated CDR1 of the heavy chain (CDRH1) from bNAb 1-18, another highly potent quaternary-binding antibody, onto several VRC01-class bNAbs, but none of them was improved. These findings point to the highly selective requirements for the establishment of quaternary contact with the HIV-1 Env trimer. The improved anti-CD4bs antibodies reported herein may provide a helpful complement to current antibody-based protocols for the therapy and prevention of HIV-1 infection. IMPORTANCE Monoclonal antibodies represent one of the most important recent innovations in the fight against infectious diseases. Although potent antibodies can be cloned from infected individuals, various strategies can be employed to improve their activity or pharmacological features. Here, we improved a lineage of very potent antibodies that target the receptor-binding site of HIV-1 by engineering chimeric molecules containing a fragment from a different monoclonal antibody. These engineered antibodies are promising candidates for development of therapeutic or preventive approaches against HIV/AIDS.


2016 ◽  
Vol 90 (22) ◽  
pp. 10220-10235 ◽  
Author(s):  
Constantinos Kurt Wibmer ◽  
Jason Gorman ◽  
Colin S. Anthony ◽  
Nonhlanhla N. Mkhize ◽  
Aliaksandr Druz ◽  
...  

ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Yijun Zhang ◽  
James H. Chapman ◽  
Asim Ulcay ◽  
Richard E. Sutton

ABSTRACTAttachment inhibitor (AI) BMS-626529 (fostemsavir) represents a novel class of antiretrovirals which target human immunodeficiency virus type 1 (HIV-1) gp120 and block CD4-induced conformational changes required for viral entry. It is now in phase III clinical trials and is expected to be approved by the U.S. Food and Drug Administration (FDA) in the near future. Although fostemsavir is very potent against HIVin vitroandin vivo, a number of resistant mutants have already been identified. Broadly neutralizing HIV antibodies (bNAbs) can potently inhibit a wide range of HIV-1 strains by binding to viral Env and are very promising candidates for HIV-1 prevention and therapy. Since both target viral Env to block viral entry, we decided to investigate the relationship between these two inhibitors. Our data show that Env mutants resistant to BMS-626529 retained susceptibility to bNAbs. A single treatment of bNAb NIH45-46G54Wcompletely inhibited the replication of these escape mutants. Remarkable synergy was observed between BMS-626529 and CD4 binding site (CD4bs)-targeting bNAbs in neutralizing HIV-1 strains at low concentrations. This synergistic effect was enhanced against virus harboring mutations conferring resistance to BMS-626529. The mechanistic basis of the observed synergy is likely enhanced inhibition of CD4 binding to the HIV-1 Env trimer by the combination of BMS-626529 and CD4bs-targeting bNAbs. This work highlights the potential for positive interplay between small- and large-molecule therapeutics against HIV entry, which may prove useful as these agents enter clinical use.IMPORTANCEAs the worldwide HIV pandemic continues, there is a continued need for novel drugs and therapies. A new class of drug, the attachment inhibitors, will soon be approved for the treatment of HIV. Broadly neutralizing antibodies are also promising candidates for HIV prevention and therapy. We investigated how this drug might work with these exciting antibodies that are very potent in blocking HIV infection of cells. These antibodies worked against virus known to be resistant to the new drug. In addition, a specific type of antibody worked really well with the new drug in blocking virus infection of cells. This work has implications for both the new drug and the antibodies that are poised to be used against HIV.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Louise Scharf ◽  
Anthony P West ◽  
Stuart A Sievers ◽  
Courtney Chen ◽  
Siduo Jiang ◽  
...  

Efforts to elicit broadly neutralizing antibodies (bNAbs) against HIV-1 require understanding germline bNAb recognition of HIV-1 envelope glycoprotein (Env). The VRC01-class bNAb family derived from the VH1-2*02 germline allele arose in multiple HIV-1–infected donors, yet targets the CD4-binding site on Env with common interactions. Modified forms of the 426c Env that activate germline-reverted B cell receptors are candidate immunogens for eliciting VRC01-class bNAbs. We present structures of germline-reverted VRC01-class bNAbs alone and complexed with 426c-based gp120 immunogens. Germline bNAb–426c gp120 complexes showed preservation of VRC01-class signature residues and gp120 contacts, but detectably different binding modes compared to mature bNAb-gp120 complexes. Unlike typical antibody-antigen interactions, VRC01–class germline antibodies exhibited preformed antigen-binding conformations for recognizing immunogens. Affinity maturation introduced substitutions increasing induced-fit recognition and electropositivity, potentially to accommodate negatively-charged complex-type N-glycans on gp120. These results provide general principles relevant to the unusual evolution of VRC01–class bNAbs and guidelines for structure-based immunogen design.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 852
Author(s):  
Ashley Lauren Bennett ◽  
Rory Henderson

The HIV-1 envelope glycoprotein (Env) mediates host cell fusion and is the primary target for HIV-1 vaccine design. The Env undergoes a series of functionally important conformational rearrangements upon engagement of its host cell receptor, CD4. As the sole target for broadly neutralizing antibodies, our understanding of these transitions plays a critical role in vaccine immunogen design. Here, we review available experimental data interrogating the HIV-1 Env conformation and detail computational efforts aimed at delineating the series of conformational changes connecting these rearrangements. These studies have provided a structural mapping of prefusion closed, open, and transition intermediate structures, the allosteric elements controlling rearrangements, and state-to-state transition dynamics. The combination of these investigations and innovations in molecular modeling set the stage for advanced studies examining rearrangements at greater spatial and temporal resolution.


Sign in / Sign up

Export Citation Format

Share Document