scholarly journals Generation and network analysis of an RNA-seq transcriptional atlas for the rat.

2021 ◽  
Author(s):  
Kim Summers ◽  
Stephen J. Bush ◽  
Chunlei Wu ◽  
David A Hume

The laboratory rat is an important model for biomedical research. To generate a comprehensive rat transcriptomic atlas, we curated and down-loaded 7700 rat RNA-seq datasets from public repositories, down-sampled them to a common depth and quantified expression. Data from 590 rat tissues and cells, averaged from each Bioproject, can be visualised and queried at http://biogps.org/ratatlas. Gene correlation network (GCN) analysis revealed clusters of transcripts that were tissue or cell-type restricted and contained transcription factors implicated in lineage determination. Other clusters were enriched for transcripts associated with biological processes. Many of these clusters overlap with previous data from analysis of other species whilst some (e.g. expressed specifically in immune cells, retina/pineal gland, pituitary and germ cells) are unique to these data. GCN on large subsets of the data related specifically to liver, nervous system, kidney, musculoskeletal system and cardiovascular system enabled deconvolution of cell-type specific signatures. The approach is extensible and the dataset can be used as a point of reference from which to analyse the transcriptomes of cell types and tissues that have not yet been sampled. Sets of strictly co-expressed transcripts provide a resource for critical interpretation of single cell RNA-seq data.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kai Kang ◽  
Caizhi Huang ◽  
Yuanyuan Li ◽  
David M. Umbach ◽  
Leping Li

Abstract Background Biological tissues consist of heterogenous populations of cells. Because gene expression patterns from bulk tissue samples reflect the contributions from all cells in the tissue, understanding the contribution of individual cell types to the overall gene expression in the tissue is fundamentally important. We recently developed a computational method, CDSeq, that can simultaneously estimate both sample-specific cell-type proportions and cell-type-specific gene expression profiles using only bulk RNA-Seq counts from multiple samples. Here we present an R implementation of CDSeq (CDSeqR) with significant performance improvement over the original implementation in MATLAB and an added new function to aid cell type annotation. The R package would be of interest for the broader R community. Result We developed a novel strategy to substantially improve computational efficiency in both speed and memory usage. In addition, we designed and implemented a new function for annotating the CDSeq estimated cell types using single-cell RNA sequencing (scRNA-seq) data. This function allows users to readily interpret and visualize the CDSeq estimated cell types. In addition, this new function further allows the users to annotate CDSeq-estimated cell types using marker genes. We carried out additional validations of the CDSeqR software using synthetic, real cell mixtures, and real bulk RNA-seq data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project. Conclusions The existing bulk RNA-seq repositories, such as TCGA and GTEx, provide enormous resources for better understanding changes in transcriptomics and human diseases. They are also potentially useful for studying cell–cell interactions in the tissue microenvironment. Bulk level analyses neglect tissue heterogeneity, however, and hinder investigation of a cell-type-specific expression. The CDSeqR package may aid in silico dissection of bulk expression data, enabling researchers to recover cell-type-specific information.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e19013-e19013
Author(s):  
Marianne T. Santaguida ◽  
Ryosuke Kita ◽  
Steven A. Schaffert ◽  
Erica K. Anderson ◽  
Kamran A Ali ◽  
...  

e19013 Background: Understanding the heterogeneity of AML is necessary for developing targeted drugs and diagnostics. A key measure of heterogeneity is the variance in response to treatments. Previously, we developed an ex vivo flow cytometry drug sensitivity assay (DSA) that predicted response to treatments in myelodysplastic syndrome. Unlike bulk cell viability measures of other drug sensitivity assays, our flow cytometry assay provides single cell resolution. The assay measures a drug’s effect on the viability or functional state of specific cell types. Here we present the development of this technology for AML, with additional measurements of DNA-Seq and RNA-Seq. Using the data from this assay, we aim to characterize the heterogeneity in AML drug sensitivity and the molecular mechanisms that drive it. Methods: As an initial feasibility analysis, we assayed 1 bone marrow and 3 peripheral blood AML patient samples. For the DSA, the samples were cultured with six AML standard of care (SOC) compounds across seven doses, in addition to two combinations. The cells were stained to detect multiple cell types including tumor blasts, and drug response was measured by flow cytometry. For the multi-omics, the cells were magnetically sorted to enrich for blasts and then assayed using a targeted 400 gene DNA-Seq panel and whole bulk transcriptome RNA-Seq. For comparison with BeatAML, Pearson correlations between gene expression and venetoclax sensitivity were investigated. Results: In our drug sensitivity assay, we measured dose response curves for the six SOC compounds, for each different cell type across each sample. The dose responses had cell type specific effects, including differences in drug response between CD11b+ blasts, CD11b- blasts, and other non-blast populations. Integrating with the DNA-Seq and RNA-Seq data, known associations between ex vivo drug response and gene expression were identified with additional cell type specificity. For example, BCL2A1 expression was negatively correlated with venetoclax sensitivity in CD11b- blasts but not in CD11b+ blasts. To further corroborate, among the top 1000 genes associated with venetoclax sensitivity in BeatAML, 93.7% had concordant directionality in effect. Conclusions: Here we describe the development of an integrated ex vivo drug sensitivity assay and multi-omics dataset. The data demonstrated that ex vivo responses to compounds differ between cell types, highlighting the importance of measuring drug response in specific cell types. In addition, we demonstrated that integrating these data will provide unique insights on molecular mechanisms that affect cell type specific drug response. As we continue to expand the number of patient samples evaluated with our multi-dimensional platform, this dataset will provide insights for novel drug target discovery, biomarker development, and, in the future, informing treatment decisions.


2020 ◽  
Author(s):  
Sonia Malaiya ◽  
Marcia Cortes-Gutierrez ◽  
Brian R. Herb ◽  
Sydney R. Coffey ◽  
Samuel R.W. Legg ◽  
...  

ABSTRACTHuntington’s disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide expansion in exon 1 of the huntingtin (Htt) gene. Cell death in HD occurs primarily in striatal medium spiny neurons (MSNs), but the involvement of specific MSN subtypes and of other striatal cell types remains poorly understood. To gain insight into cell type-specific disease processes, we studied the nuclear transcriptomes of 4,524 cells from the striatum of a genetically precise knock-in mouse model of the HD mutation, HttQ175/+, and from wildtype controls. We used 14-15-month-old mice, a time point roughly equivalent to an early stage of symptomatic human disease. Cell type distributions indicated selective loss of D2 MSNs and increased microglia in aged HttQ175/+ mice. Thousands of differentially expressed genes were distributed across most striatal cell types, including transcriptional changes in glial populations that are not apparent from RNA-seq of bulk tissue. Reconstruction of cell typespecific transcriptional networks revealed a striking pattern of bidirectional dysregulation for many cell type-specific genes. Typically, these genes were repressed in their primary cell type, yet de-repressed in other striatal cell types. Integration with existing epigenomic and transcriptomic data suggest that partial loss-of-function of the Polycomb Repressive Complex 2 (PRC2) may underlie many of these transcriptional changes, leading to deficits in the maintenance of cell identity across virtually all cell types in the adult striatum.


2018 ◽  
Author(s):  
Xuran Wang ◽  
Jihwan Park ◽  
Katalin Susztak ◽  
Nancy R. Zhang ◽  
Mingyao Li

AbstractWe present MuSiC, a method that utilizes cell-type specific gene expression from single-cell RNA sequencing (RNA-seq) data to characterize cell type compositions from bulk RNA-seq data in complex tissues. When applied to pancreatic islet and whole kidney expression data in human, mouse, and rats, MuSiC outperformed existing methods, especially for tissues with closely related cell types. MuSiC enables characterization of cellular heterogeneity of complex tissues for identification of disease mechanisms.


2019 ◽  
Vol 31 (3) ◽  
pp. 496 ◽  
Author(s):  
Iside Scaravaggi ◽  
Nicole Borel ◽  
Rebekka Romer ◽  
Isabel Imboden ◽  
Susanne E. Ulbrich ◽  
...  

Previous endometrial gene expression studies during the time of conceptus migration did not provide final conclusions on the mechanisms of maternal recognition of pregnancy (MRP) in the mare. This called for a cell type-specific endometrial gene expression analysis in response to embryo signals to improve the understanding of gene expression regulation in the context of MRP. Laser capture microdissection was used to collect luminal epithelium (LE), glandular epithelium and stroma from endometrial biopsies from Day 12 of pregnancy and Day 12 of the oestrous cycle. RNA sequencing (RNA-Seq) showed greater expression differences between cell types than between pregnant and cyclic states; differences between the pregnant and cyclic states were mainly found in LE. Comparison with a previous RNA-Seq dataset for whole biopsy samples revealed the specific origin of gene expression differences. Furthermore, genes specifically differentially expressed (DE) in one cell type were found that were not detectable as DE in biopsies. Overall, this study revealed spatial information about endometrial gene expression during the phase of initial MRP. The conceptus induced changes in the expression of genes involved in blood vessel development, specific spatial regulation of the immune system, growth factors, regulation of prostaglandin synthesis, transport prostaglandin receptors, specifically prostaglandin F receptor (PTGFR) in the context of prevention of luteolysis.


2020 ◽  
Author(s):  
Songwei Ge ◽  
Haohan Wang ◽  
Amir Alavi ◽  
Eric Xing ◽  
Ziv Bar-Joseph

AbstractDimensionality reduction is an important first step in the analysis of single cell RNA-seq (scRNA-seq) data. In addition to enabling the visualization of the profiled cells, such representations are used by many downstream analyses methods ranging from pseudo-time reconstruction to clustering to alignment of scRNA-seq data from different experiments, platforms, and labs. Both supervised and unsupervised methods have been proposed to reduce the dimension of scRNA-seq. However, all methods to date are sensitive to batch effects. When batches correlate with cell types, as is often the case, their impact can lead to representations that are batch rather than cell type specific. To overcome this we developed a domain adversarial neural network model for learning a reduced dimension representation of scRNA-seq data. The adversarial model tries to simultaneously optimize two objectives. The first is the accuracy of cell type assignment and the second is the inability to distinguish the batch (domain). We tested the method by using the resulting representation to align several different datasets. As we show, by overcoming batch effects our method was able to correctly separate cell types, improving on several prior methods suggested for this task. Analysis of the top features used by the network indicates that by taking the batch impact into account, the reduced representation is much better able to focus on key genes for each cell type.


Author(s):  
Jiebiao Wang ◽  
Kathryn Roeder ◽  
Bernie Devlin

AbstractWhen assessed over a large number of samples, bulk RNA sequencing provides reliable data for gene expression at the tissue level. Single-cell RNA sequencing (scRNA-seq) deepens those analyses by evaluating gene expression at the cellular level. Both data types lend insights into disease etiology. With current technologies, however, scRNA-seq data are known to be noisy. Moreover, constrained by costs, scRNA-seq data are typically generated from a relatively small number of subjects, which limits their utility for some analyses, such as identification of gene expression quantitative trait loci (eQTLs). To address these issues while maintaining the unique advantages of each data type, we develop a Bayesian method (bMIND) to integrate bulk and scRNA-seq data. With a prior derived from scRNA-seq data, we propose to estimate sample-level cell-type-specific (CTS) expression from bulk expression data. The CTS expression enables large-scale sample-level downstream analyses, such as detecting CTS differentially expressed genes (DEGs) and eQTLs. Through simulations, we demonstrate that bMIND improves the accuracy of sample-level CTS expression estimates and power to discover CTS-DEGs when compared to existing methods. To further our understanding of two complex phenotypes, autism spectrum disorder and Alzheimer’s disease, we apply bMIND to gene expression data of relevant brain tissue to identify CTS-DEGs. Our results complement findings for CTS-DEGs obtained from snRNA-seq studies, replicating certain DEGs in specific cell types while nominating other novel genes in those cell types. Finally, we calculate CTS-eQTLs for eleven brain regions by analyzing GTEx V8 data, creating a new resource for biological insights.


2022 ◽  
Author(s):  
Matthew T Buckley ◽  
Eric Sun ◽  
Benson M. George ◽  
Ling Liu ◽  
Nicholas Schaum ◽  
...  

Aging manifests as progressive dysfunction culminating in death. The diversity of cell types is a challenge to the precise quantification of aging and its reversal. Here we develop a suite of 'aging clocks' based on single cell transcriptomic data to characterize cell type-specific aging and rejuvenation strategies. The subventricular zone (SVZ) neurogenic region contains many cell types and provides an excellent system to study cell-level tissue aging and regeneration. We generated 21,458 single-cell transcriptomes from the neurogenic regions of 28 mice, tiling ages from young to old. With these data, we trained a suite of single cell-based regression models (aging clocks) to predict both chronological age (passage of time) and biological age (fitness, in this case the proliferative capacity of the neurogenic region). Both types of clocks perform well on independent cohorts of mice. Genes underlying the single cell-based aging clocks are mostly cell-type specific, but also include a few shared genes in the interferon and lipid metabolism pathways. We used these single cell-based aging clocks to measure transcriptomic rejuvenation, by generating single cell RNA-seq datasets of SVZ neurogenic regions for two interventions - heterochronic parabiosis (young blood) and exercise. Interestingly, the use of aging clocks reveals that both heterochronic parabiosis and exercise reverse transcriptomic aging in the niche, but in different ways across cell types and genes. This study represents the first development of high-resolution aging clocks from single cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.


Sign in / Sign up

Export Citation Format

Share Document