scholarly journals Ultrafast RNA extraction-free SARS-CoV-2 detection by direct RT-PCR using a rapid thermal cycling approach

Author(s):  
Robin Struijk ◽  
Anton van den Ouden ◽  
Brian McNally ◽  
Theun de Groot ◽  
Bert Mulder ◽  
...  

The surging COVID19 pandemic has underlined the need for quick, sensitive, and high-throughput SARS-CoV-2 detection assays. Although many different methods to detect SARS-CoV-2 particles in clinical material have been developed, none of these assays are successful in combining all three of the above characteristics into a single, easy-to-use method that is suitable for large-scale use. Here we report the development of a direct RT-PCR SARS-CoV-2 detection method that can reliably detect minute quantities of SARS-CoV-2 gRNA in nasopharyngeal swab samples as well as the presence of human genomic DNA. An extraction-less validation protocol was carried out to determine performance characteristics of the assay in both synthetic SARS-CoV-2 RNA as well as clinical specimens. Feasibility of the assay and analytical sensitivity was first determined by testing a dilution series of synthetic SARS-CoV-2 RNA in two different solvents (water and AMIES VTM), revealing a high degree of linearity and robustness in fluorescence readouts. Following analytical performance using synthetic RNA, the limit of detection was determined at equal to or less than 1 SARS-CoV-2 copy/ul of sample in a commercially available sample panel that contains surrogate clinical samples with varying SARS-CoV-2 viral load. Lastly, we benchmarked our method against a reference qPCR method by testing 87 nasopharyngeal swab samples. The direct endpoint ultra-fast RT-PCR method exhibited a positive percent agreement score of 98.5% and a negative percent agreement score of 100% as compared to the reference method, while RT-PCR cycling was completed in 27 minutes/sample as opposed to 60 minutes/sample in the reference qPCR method. In summary, we describe a rapid direct RT-PCR method to detect SARS-CoV-2 material in clinical specimens which can be completed in significantly less time as compared to conventional RT-PCR methods, making it an attractive option for large-scale SARS-CoV-2 screening applications.

2020 ◽  
Vol 78 (8) ◽  
Author(s):  
Onya Opota ◽  
René Brouillet ◽  
Gilbert Greub ◽  
Katia Jaton

ABSTRACT Objectives:In order to cope with the rapid spread of the COVID-19 pandemic, we introduced on our in-house high-throughput molecular diagnostic platform (MDx Platform) a real-time reverse transcriptase PCR (RT-PCR) to detect the SARS-CoV-2 from any clinical specimens. The aim of this study was to compare the RT-PCR results obtain with the MDx Platform and the commercial assay cobas SARS-CoV-2 (Roche) on nasopharyngeal swab and other clinical specimens including sputum, bronchial aspirate, bronchoalveolar lavage and anal swabs. Methods: Samples received in our laboratory from patients suspected of COVID-19 (n = 262) were tested in parallel with our MDx platform SARS-CoV-2 PCR and with the cobas SARS-CoV-2 test. Results: The overall agreement between the two tests for all samples tested was 99.24% (260/262), which corresponded to agreements of 100% (178/178) on nasopharyngeal swabs, 95.45% (42/44) on lower respiratory tract specimen with discordant resultS obtained for very high cycle threshold (Ct) value and 100% (40/40) on anorectal swabs. The Ct values for nasopharyngeal swabs displayed an excellent correlation (R2 > 96%) between both tests. Conclusions: The high agreements between the cobas SARS-CoV-2 test and the MDx platform supports the use of both methods for the diagnostic of COVID-19 on various clinical samples. Very few discrepant results may occur at very low viral load.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Esra Gültekin ◽  
Muhammet Hamidullah Uyanık ◽  
Ayşe Albayrak ◽  
Selçuk Kılıç

Abstract Background Brucellosis is a worldwide zoonotic disease that causes serious public health problems. This study aimed to identify Brucella strains isolated from various clinical samples by conventional and molecular methods and to determine antimicrobial susceptibilities against doxycycline (DOX), streptomycin (STR), ciprofloxacin (CIP) and rifampicin (RIF) by the gradient strip (E test) test method. Methods A total of 87 Brucella strains isolated from various clinical specimens between 2004 and 2018 were included in this study. While four of the 87 strains included in the study were identified only at the genus level, the remaining 83 strains were identified at the species level by the Real-Time Multiplex PCR (M-RT-PCR) method and conventional methods were used for biotyping. Results According to molecular identification results, 83 strains were identified as B. melitensis by the M-RT-PCR method, with 82 strains identified as Brucella melitensis biovar (bv) 3 and one as B. melitensis bv 1 according to the conventional biotyping method. Among the antibiotics studied, CIP was found to be the most active agent according to the minimum inhibitory concentrations (MIC)90 values. This was followed by DOX and STR, respectively. While all of the isolates were sensitive to CIP, DOX and STR, 18 (20.7%) strains were found to be moderately susceptible to RIF, with the highest values of MIC50 and MIC90. Conclusions In our study, all strains were identified as B. melitensis. DOX, STR, CIP and RIF used in the treatment of brucellosis were found to be effective.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Andreas Hober ◽  
Khue Hua Tran-Minh ◽  
Dominic Foley ◽  
Thomas McDonald ◽  
Johannes PC Vissers ◽  
...  

Reliable, robust, large-scale molecular testing for SARS-CoV-2 is essential for monitoring the ongoing Covid-19 pandemic. We have developed a scalable analytical approach to detect viral proteins based on peptide immunoaffinity enrichment combined with liquid chromatography - mass spectrometry (LC-MS). This is a multiplexed strategy, based on targeted proteomics analysis and read-out by LC-MS, capable of precisely quantifying and confirming the presence of SARS-CoV-2 in PBS swab media from combined throat/nasopharynx/saliva samples.<br />The results reveal that the levels of SARS-CoV-2 measured by LC-MS correlate well with their corresponding RT-PCR readout (r=0.79). The analytical workflow shows similar turnaround times as regular RT-PCR instrumentation with a quantitative readout of viral proteins corresponding to cycle thresholds (Ct) equivalents ranging from 21 to 34. Using RT-PCR as a reference, we demonstrate that the LC-MS-based method has 100% negative percent agreement (estimated specificity) and 95% positive percent agreement (estimated sensitivity) when analyzing clinical samples collected from asymptomatic individuals with a Ct within the limit of detection of the mass spectrometer (Ct ≤30). These results suggest that a scalable analytical method based on LC-MS has a place in future pandemic preparedness centers to complement current virus detection technologies.


2021 ◽  
Vol 9 (3) ◽  
pp. 642
Author(s):  
Michael Huber ◽  
Peter Werner Schreiber ◽  
Thomas Scheier ◽  
Annette Audigé ◽  
Roberto Buonomano ◽  
...  

Rising demands for repetitive SARS-CoV-2 screens and mass testing necessitate additional test strategies. Saliva may serve as an alternative to nasopharyngeal swab (NPS) as its collection is simple, non-invasive and amenable for mass- and home testing, but its rigorous validation, particularly in children, is missing. We conducted a large-scale head-to-head comparison of SARS-CoV-2 detection by RT-PCR in saliva and NPS of 1270 adults and children reporting to outpatient test centers and an emergency unit. In total, 273 individuals were tested positive for SARS-CoV-2 in either NPS or saliva. SARS-CoV-2 RT-PCR results in the two specimens showed a high agreement (overall percent agreement = 97.8%). Despite lower viral loads in the saliva of both adults and children, detection of SARS-CoV-2 in saliva fared well compared to NPS (positive percent agreement = 92.5%). Importantly, in children, SARS-CoV-2 infections were more often detected in saliva than NPS (positive predictive value = 84.8%), underlining that NPS sampling in children can be challenging. The comprehensive parallel analysis reported here establishes saliva as a generally reliable specimen for the detection of SARS-CoV-2, with particular advantages for testing children, that is readily applicable to increase and facilitate repetitive and mass testing in adults and children.


Author(s):  
Giulia Menchinelli ◽  
Licia Bordi ◽  
Flora Marzia Liotti ◽  
Ivana Palucci ◽  
Maria Rosaria Capobianchi ◽  
...  

Abstract Objectives Compared to RT-PCR, lower performance of antigen detection assays, including the Lumipulse G SARS-CoV-2 Ag assay, may depend on specific testing scenarios. Methods We tested 594 nasopharyngeal swab samples from individuals with COVID-19 (RT-PCR cycle threshold [Ct] values ≤ 40) or non-COVID-19 (Ct values > 40) diagnoses. RT-PCR positive samples were assigned to diagnostic, screening, or monitoring groups of testing. Results With a limit of detection of 1.2 × 104 SARS-CoV-2 RNA copies/ml, Lumipulse showed positive percent agreement (PPA) of 79.9% (155/194) and negative percent agreement of 99.3% (397/400), whereas PPAs were 100% for samples with Ct values of <18 or 18–<25 and 92.5% for samples with Ct values of 25–<30. By three groups, Lumipulse showed PPA of 87.0% (60/69), 81.1% (43/53), or 72.2% (52/72), respectively, whereas PPA was 100% for samples with Ct values of <18 or 18–<25, and was 94.4, 80.0, or 100% for samples with Ct values of 25–<30, respectively. Additional testing of RT-PCR positive samples for SARS-CoV-2 subgenomic RNA showed that, by three groups, PPA was 63.8% (44/69), 62.3% (33/53), or 33.3% (24/72), respectively. PPAs dropped to 55.6, 20.0, or 41.7% for samples with Ct values of 25–<30, respectively. All 101 samples with a subgenomic RNA positive result had a Lumipulse assay’s antigen positive result, whereas only 54 (58.1%) of remaining 93 samples had a Lumipulse assay’s antigen positive result. Conclusions Lumipulse assay was highly sensitive in samples with low RT-PCR Ct values, implying repeated testing to reduce consequences of false-negative results.


2020 ◽  
Author(s):  
zhenhua Guo ◽  
Kunpeng Li ◽  
Songlin Qiao ◽  
Xinxin Chen ◽  
Ruiguang Deng ◽  
...  

Abstract Background: African swine fever (ASF) is the most important disease to the pigs and cause serious economic losses to the countries with large-scale swine production. Vaccines are recognized as the most useful tool to prevent and control ASF virus (ASFV) infection. Currently, the MGF505 and MGF360 gene-deleted ASFVs or combined with CD2v deletion were confirmed to be the most promising vaccine candidates. Thus, it is essential to develop a diagnosis method to discriminate wide-type strain from the vaccines used.Results: In this study, we established a duplex TaqMan real-time PCR based on the B646L gene and MGF505-2R gene. The sequence alignment showed that the targeted regions of primers and probes are highly conserved in the genotype II ASFVs. The duplex real-time assay can specifically detect B646L and MGF505-2R gene single or simultaneously without cross-reaction with other porcine viruses tested. The limit of detection was 5.8 copies and 3.0 copies for the standard plasmids containing B646L and MGF505-2R genes, respectively. Clinical samples were tested in parallel by duplex real-time PCR and a commercial ASFV detection kit. The detection results of these two assays against B646L gene were well consistent.Conclusion: We successfully developed and evaluated a duplex TaqMan real-time PCR method which can effectively distinguish the wide type and MGF505 gene-deleted ASFVs. It would be a useful tool for the clinical diagnosis and control of ASF.


Author(s):  
Rania Francis ◽  
Marion Le Bideau ◽  
Priscilla Jardot ◽  
Clio Grimaldier ◽  
Didier Raoult ◽  
...  

AbstractSARS-CoV-2, a novel coronavirus infecting humans, is responsible for the current COVID-19 global pandemic. If several strains could be isolated worldwide, especially for in-vitro drug susceptibility testing and vaccine development, few laboratories routinely isolate SARS-CoV-2. This is due to the fact that the current co-culture strategy is highly time consuming and requires working in a biosafety level 3 laboratory. In this work, we present a new strategy based on high content screening automated microscopy (HCS) allowing large scale isolation of SARS-CoV-2 from clinical samples in 1 week. A randomized panel of 104 samples, including 72 tested positive by RT-PCR and 32 tested negative, were processed with our HCS procedure and were compared to the classical isolation procedure. Isolation rate was 43 % with both strategies on RT-PCR positive samples, and was correlated with the initial RNA viral load in the samples, where we obtained a positivity threshold of 27 Ct. Co-culture delays were shorter with HCS strategy, where 80 % of the positive samples were recovered by the third day of co-culture, as compared to only 25 % with the classic strategy. Moreover, only the HCS strategy allowed us to recover all the positive elements after 1 week of co-culture. This system allows rapid and automated screening of clinical samples with minimal operator work load, thus reducing the risks of contamination.


2021 ◽  
Author(s):  
Uffe Vest Schneider ◽  
Jenny Dahl Knudsen ◽  
Anders Koch ◽  
Nikolai Søren Kirkby ◽  
Jan Gorm Lisby

BACKGROUND The SARS-CoV-2 pandemic has resulted in an unprecedented level of world-wide testing for epidemiologic and diagnostic purposes, and due to the extreme need for tests, the gold standard reverse transcription polymerase chain reaction (RT-qPCR) testing capacity has been unable to meet the overall global testing demand. Consequently, although current literature has shown the sensitivity of rapid antigen tests (RATs) to be inferior to RT-qPCR, RATs have been implemented on a large scale without solid data on performance. OBJECTIVE This study will compare analytical and clinical sensitivities and specificities of 50 lateral flow or laboratory based RATs and three Strand Invasion Based Amplification (SIBA)-rt-PCR tests from 30 manufacturers to RT-qPCR on samples obtained from the deep oropharynx. In addition, the study will compare sensitivities and specificities of the included RATs as well as RT-qPCR on clinical samples obtained from the deep oropharynx, anterior nasal cavity, saliva, deep nasopharynx and expired air to RT-qPCR from deep oropharyngeal samples. METHODS In the prospective part of the study, 200 individuals found SARS-CoV-2 positive and 200 individuals found SARS-CoV-2 negative by routine RT-qPCR testing will be re-tested with each RAT applying RT-qPCR as the reference method. In the retrospective part of the study, 304 deep oropharyngeal cavity swabs divided into four groups based on RT-qPCR Cq levels will be tested by each RAT. RESULTS The results will be reported in several manuscripts with different aims. The first manuscript will report retrospective (analytical sensitivity, overall and stratified into different Cq range groups) and prospective (clinical sensitivity) data for RATs with RT-qPCR results as the reference method. The second manuscript will report results for RAT based on anatomical sampling location. The third manuscript will compare different anatomical sampling locations by RT-qPCR testing. The fourth manuscript will focus on RATs that rely on central laboratory testing. Test from four different manufactures will be compared for analytical performance data on retrospective deep oropharyngeal swab samples. The fifth manuscript will report the results of four RATs applied both as professional use and as self-test. The last manuscript will report the results from two breath tests participating in the study. Comparison of sensitivity and specificity between RATs will be done using McNemar for paired samples and chi-squared test for unpaired samples. Comparison of PPV and NPV between RATs will be done by bootstrap test. 95 % confidence intervals for sensitivity, specificity, positive predictive value and negative predictive value are calculated as bootstrap confidence intervals CONCLUSIONS The study will compare the sensitivities of a large number of RATs for SARS-CoV-2 compared to RT-qPCR and will address whether lateral flow based RATs test differ significantly from laboratory based RATS. The anatomical test location for both RAT and RT-qPCR will be compared. CLINICALTRIAL ClinicalTrials.gov NCT04913116


2021 ◽  
Author(s):  
Xiu-Feng Wan ◽  
Cynthia Y Tang ◽  
Detlef Ritter ◽  
Yang Wang ◽  
Tao Li ◽  
...  

Inpatient COVID-19 cases present enormous costs to patients and health systems. Many hospitalized patients may still test COVID-19 positive, even after resolution of symptoms. Thus, a pressing concern for clinicians is the safety of discharging these asymptomatic patients if they have any remaining infectivity. This case report explores the viral viability in a patient with persistent COVID-19 over the course of a two-month hospitalization. Positive nasopharyngeal swab samples, analyzed by quantitative reverse transcription polymerase chain reactions (qRT-PCR), were collected and isolated in the laboratory, and infectious doses were analyzed throughout the hospitalization period. The patient experienced waning symptoms by hospital day 40 and had no viable virus growth in the laboratory by hospital day 41, suggesting no risk of infectivity, despite positive RT-PCR results, which prolonged his hospital stay. Notably, this case showed infectivity for at least 24 days from disease onset, which is longer than the discontinuation of transmission-based precautions recommendation by CDC. Thus, our findings suggest that the timeline for discontinuing transmission-based precautions may need to be extended for patients with prolonged illness. Additional large-scale studies are needed to draw definitive conclusions on the appropriate clinical management for these patients.


Sign in / Sign up

Export Citation Format

Share Document