scholarly journals Jointly leveraging spatial transcriptomics and deep learning models for pathology image annotation improves cell type identification over either approach alone.

2021 ◽  
Author(s):  
Asif Zubair ◽  
Richard H. Chapple ◽  
Sivaraman Natarajan ◽  
William C. Wright ◽  
Min Pan ◽  
...  

The disorganization of cell types within tissues underlies many human diseases and has been studied for over a century using the conventional tools of pathology, including tissue-marking dyes such as the H&E stain. Recently, spatial transcriptomics technologies were developed that can measure spatially resolved gene expression directly in pathology-stained tissues sections, revealing cell types and their dysfunction in unprecedented detail. In parallel, artificial intelligence (AI) has approached pathologist-level performance in computationally annotating H&E images of tissue sections. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and AI-based pathology has performed less impressively outside their training datasets. Here, we describe a methodology that can computationally integrate AI-annotated pathology images with spatial transcriptomics data to markedly improve inferences of tissue cell type composition made over either class of data alone. We show that this methodology can identify regions of clinically relevant tumor immune cell infiltration, which is predictive of response to immunotherapy and was missed by an initial pathologist's manual annotation. Thus, combining spatial transcriptomics and AI-based image annotation has the potential to exceed pathologist-level performance in clinical diagnostic applications and to improve the many applications of spatial transcriptomics that rely on accurate cell type annotations.


2021 ◽  
Author(s):  
Brendan Francis Miller ◽  
Lyla Atta ◽  
Arpan Sahoo ◽  
Feiyang Huang ◽  
Jean Fan

Recent technological advancements have enabled spatially resolved transcriptomic profiling but at multi-cellular pixel resolution, thereby hindering the identification of cell-type spatial co-localization patterns. We developed STdeconvolve as an unsupervised approach to deconvolve underlying cell-types comprising such multi-cellular pixel resolution spatially resolved transcriptomics datasets. We show that STdeconvolve effectively recovers the putative transcriptomic profiles of cell-types and their proportional representation within spatially resolved pixels without reliance on external single-cell transcriptomics references.



eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.



2019 ◽  
Author(s):  
Elmer A. Fernández ◽  
Yamil D. Mahmoud ◽  
Florencia Veigas ◽  
Darío Rocha ◽  
Mónica Balzarini ◽  
...  

AbstractRNA sequencing has proved to be an efficient high-throughput technique to robustly characterize the presence and quantity of RNA in tumor biopsies at a given time. Importantly, it can be used to computationally estimate the composition of the tumor immune infiltrate and to infer the immunological phenotypes of those cells. Given the significant impact of anti-cancer immunotherapies and the role of the associated immune tumor microenvironment (ITME) on its prognosis and therapy response, the estimation of the immune cell-type content in the tumor is crucial for designing effective strategies to understand and treat cancer. Current digital estimation of the ITME cell mixture content can be performed using different analytical tools. However, current methods tend to over-estimate the number of cell-types present in the sample, thus under-estimating true proportions, biasing the results. We developed MIXTURE, a noise-constrained recursive feature selection for support vector regression that overcomes such limitations. MIXTURE deconvolutes cell-type proportions of bulk tumor samples for both RNA microarray or RNA-Seq platforms from a leukocyte validated gene signature. We evaluated MIXTURE over simulated and benchmark data sets. It overcomes competitive methods in terms of accuracy on the true number of present cell-types and proportions estimates with increased robustness to estimation bias. It also shows superior robustness to collinearity problems. Finally, we investigated the human immune microenvironment of breast cancer, head and neck squamous cell carcinoma, and melanoma biopsies before and after anti-PD-1 immunotherapy treatment revealing associations to response to therapy which have not seen by previous methods.



2021 ◽  
Author(s):  
Yanxiang Deng ◽  
Marek Bartosovic ◽  
Sai Ma ◽  
Di Zhang ◽  
Yang Liu ◽  
...  

Cellular function in tissue is dependent upon the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping, but it remains elusive to capture spatial epigenetic information of tissue at cellular level and genome scale. Here we report on spatial-ATAC-seq: spatially resolved chromatin accessibility profiling of tissue section via next-generation sequencing by combining in situ Tn5 transposition chemistry and microfluidic deterministic barcoding. Spatial chromatin accessibility profiling of mouse embryos delineated tissue region-specific epigenetic landscapes and identified gene regulators implicated in the central nerve system development. Mapping the accessible genome in human tonsil tissue with 20μm pixel size revealed spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology takes spatial biology to a new realm by enabling spatially resolved epigenomics to improve our understanding of cell identity, state, and fate decision in relation to epigenetic underpinnings in development and disease.



2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.



eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Julien Racle ◽  
Kaat de Jonge ◽  
Petra Baumgaertner ◽  
Daniel E Speiser ◽  
David Gfeller

Immune cells infiltrating tumors can have important impact on tumor progression and response to therapy. We present an efficient algorithm to simultaneously estimate the fraction of cancer and immune cell types from bulk tumor gene expression data. Our method integrates novel gene expression profiles from each major non-malignant cell type found in tumors, renormalization based on cell-type-specific mRNA content, and the ability to consider uncharacterized and possibly highly variable cell types. Feasibility is demonstrated by validation with flow cytometry, immunohistochemistry and single-cell RNA-Seq analyses of human melanoma and colorectal tumor specimens. Altogether, our work not only improves accuracy but also broadens the scope of absolute cell fraction predictions from tumor gene expression data, and provides a unique novel experimental benchmark for immunogenomics analyses in cancer research (http://epic.gfellerlab.org).



Author(s):  
Xiaoyu Lu ◽  
Szu-Wei Tu ◽  
Wennan Chang ◽  
Changlin Wan ◽  
Jiashi Wang ◽  
...  

Abstract Deconvolution of mouse transcriptomic data is challenged by the fact that mouse models carry various genetic and physiological perturbations, making it questionable to assume fixed cell types and cell type marker genes for different data set scenarios. We developed a Semi-Supervised Mouse data Deconvolution (SSMD) method to study the mouse tissue microenvironment. SSMD is featured by (i) a novel nonparametric method to discover data set-specific cell type signature genes; (ii) a community detection approach for fixing cell types and their marker genes; (iii) a constrained matrix decomposition method to solve cell type relative proportions that is robust to diverse experimental platforms. In summary, SSMD addressed several key challenges in the deconvolution of mouse tissue data, including: (i) varied cell types and marker genes caused by highly divergent genotypic and phenotypic conditions of mouse experiment; (ii) diverse experimental platforms of mouse transcriptomics data; (iii) small sample size and limited training data source and (iv) capable to estimate the proportion of 35 cell types in blood, inflammatory, central nervous or hematopoietic systems. In silico and experimental validation of SSMD demonstrated its high sensitivity and accuracy in identifying (sub) cell types and predicting cell proportions comparing with state-of-the-arts methods. A user-friendly R package and a web server of SSMD are released via https://github.com/xiaoyulu95/SSMD.



2019 ◽  
Author(s):  
Laura E. Sanman ◽  
Ina W. Chen ◽  
Jake M. Bieber ◽  
Veronica Steri ◽  
Byron Hann ◽  
...  

AbstractRenewing tissues have the remarkable ability to continually produce both proliferative progenitor and specialized differentiated cell-types. How are complex milieus of microenvironmental signals interpreted to coordinate tissue cell-type composition? Here, we develop a high-throughput approach that combines organoid technology and quantitative imaging to address this question in the context of the intestinal epithelium. Using this approach, we comprehensively survey enteroid responses to individual and paired perturbations to eight epithelial signaling pathways. We uncover culture conditions that enrich for specific cell-types, including Lgr5+ stem and enteroendocrine cells. We analyze interactions between perturbations and dissect mechanisms underlying an unexpected mutual antagonism between EGFR and IL-4 signals. Finally, we show that, across diverse perturbations, modulating proliferation of transit-amplifying cells also consistently changes the composition of differentiated secretory and absorptive cell-types. This property is conserved in vivo and can arise from differential amplification of secretory and absorptive progenitor cells. Taken together, the observations highlight an underappreciated role for transit-amplifying cells in which proliferation of these short-lived progenitors provides a lineage-based mechanism for tuning differentiated cell-type composition.



2018 ◽  
Author(s):  
Michael Lenz ◽  
Ilja C.W. Arts ◽  
Ralf L.M. Peeters ◽  
Theo M. de Kok ◽  
Gökhan Ertaylan

AbstractBackgroundHighly specialized cells work in synergy forming tissues to perform functions required for the survival of organisms. Understanding this tissue-specific cellular heterogeneity and homeostasis is essential to comprehend the development of diseases within the tissue and also for developing regenerative therapies. Cellular subpopulations in the adipose tissue have been related to disease development, but efforts towards characterizing the adipose tissue cell type composition are limited due to lack of robust cell surface markers, limited access to tissue samples, and the labor-intensive process required to identify them.ResultsWe propose a framework, identifying cellular heterogeneity while providing state-of-the-art cellular markers for each cell type present in tissues using transcriptomics level analysis. We validate our approach with an independent dataset and present the most comprehensive study of adipose tissue cell type composition to date, determining the relative amounts of 21 different cell types in 779 adipose tissue samples detailing differences across four adipose tissue depots, between genders, across ranges of BMI and in different stages of type-2 diabetes. We also highlight the heterogeneity in reported marker-based studies of adipose tissue cell type composition and provide novel cellular markers to distinguish different cell types within the adipose tissue.ConclusionsOur study provides a systematic framework for studying cell type composition in a given tissue and valuable insights into adipose tissue cell type heterogeneity in health and disease.



2018 ◽  
Author(s):  
Xuran Wang ◽  
Jihwan Park ◽  
Katalin Susztak ◽  
Nancy R. Zhang ◽  
Mingyao Li

AbstractWe present MuSiC, a method that utilizes cell-type specific gene expression from single-cell RNA sequencing (RNA-seq) data to characterize cell type compositions from bulk RNA-seq data in complex tissues. When applied to pancreatic islet and whole kidney expression data in human, mouse, and rats, MuSiC outperformed existing methods, especially for tissues with closely related cell types. MuSiC enables characterization of cellular heterogeneity of complex tissues for identification of disease mechanisms.



Sign in / Sign up

Export Citation Format

Share Document