scholarly journals MIXTURE: an improved algorithm for immune tumor microenvironment estimation based on gene expression data

2019 ◽  
Author(s):  
Elmer A. Fernández ◽  
Yamil D. Mahmoud ◽  
Florencia Veigas ◽  
Darío Rocha ◽  
Mónica Balzarini ◽  
...  

AbstractRNA sequencing has proved to be an efficient high-throughput technique to robustly characterize the presence and quantity of RNA in tumor biopsies at a given time. Importantly, it can be used to computationally estimate the composition of the tumor immune infiltrate and to infer the immunological phenotypes of those cells. Given the significant impact of anti-cancer immunotherapies and the role of the associated immune tumor microenvironment (ITME) on its prognosis and therapy response, the estimation of the immune cell-type content in the tumor is crucial for designing effective strategies to understand and treat cancer. Current digital estimation of the ITME cell mixture content can be performed using different analytical tools. However, current methods tend to over-estimate the number of cell-types present in the sample, thus under-estimating true proportions, biasing the results. We developed MIXTURE, a noise-constrained recursive feature selection for support vector regression that overcomes such limitations. MIXTURE deconvolutes cell-type proportions of bulk tumor samples for both RNA microarray or RNA-Seq platforms from a leukocyte validated gene signature. We evaluated MIXTURE over simulated and benchmark data sets. It overcomes competitive methods in terms of accuracy on the true number of present cell-types and proportions estimates with increased robustness to estimation bias. It also shows superior robustness to collinearity problems. Finally, we investigated the human immune microenvironment of breast cancer, head and neck squamous cell carcinoma, and melanoma biopsies before and after anti-PD-1 immunotherapy treatment revealing associations to response to therapy which have not seen by previous methods.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Julien Racle ◽  
Kaat de Jonge ◽  
Petra Baumgaertner ◽  
Daniel E Speiser ◽  
David Gfeller

Immune cells infiltrating tumors can have important impact on tumor progression and response to therapy. We present an efficient algorithm to simultaneously estimate the fraction of cancer and immune cell types from bulk tumor gene expression data. Our method integrates novel gene expression profiles from each major non-malignant cell type found in tumors, renormalization based on cell-type-specific mRNA content, and the ability to consider uncharacterized and possibly highly variable cell types. Feasibility is demonstrated by validation with flow cytometry, immunohistochemistry and single-cell RNA-Seq analyses of human melanoma and colorectal tumor specimens. Altogether, our work not only improves accuracy but also broadens the scope of absolute cell fraction predictions from tumor gene expression data, and provides a unique novel experimental benchmark for immunogenomics analyses in cancer research (http://epic.gfellerlab.org).


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jianlei Bi ◽  
Fangfang Bi ◽  
Xue Pan ◽  
Qing Yang

Abstract Background Glycolysis affects tumor growth, invasion, chemotherapy resistance, and the tumor microenvironment. In this study, we aimed to construct a glycolysis-related prognostic model for ovarian cancer and analyze its relationship with the tumor microenvironment’s immune cell infiltration. Methods We obtained six glycolysis-related gene sets for gene set enrichment analysis (GSEA). Ovarian cancer data from The Cancer Genome Atlas (TCGA) database and two Gene Expression Omnibus (GEO) datasets were divided into two groups after removing batch effects. We compared the tumor environments' immune components in high-risk and low-risk groups and analyzed the correlation between glycolysis- and immune-related genes. Then, we generated and validated a predictive model for the prognosis of ovarian cancer using the glycolysis-related genes. Results Overall, 27/329 glycolytic genes were associated with survival in ovarian cancer, 8 of which showed predictive value. The tumor cell components in the tumor microenvironment did not differ between the high-risk and low-risk groups; however, the immune score differed significantly between groups. In total, 13/24 immune cell types differed between groups, including 10 T cell types and three other immune cell types. Eight glycolysis-related prognostic genes were related to the expression of multiple immune-related genes at varying degrees, suggesting a relationship between glycolysis and immune response. Conclusions We identified eight glycolysis-related prognostic genes that effectively predicted survival in ovarian cancer. To a certain extent, the newly identified gene signature was related to the tumor microenvironment, especially immune cell infiltration and immune-related gene expression. These findings provide potential biomarkers and therapeutic targets for ovarian cancer.


2017 ◽  
Author(s):  
Julien Racle ◽  
Kaat de Jonge ◽  
Petra Baumgaertner ◽  
Daniel E. Speiser ◽  
David Gfeller

AbstractImmune cells infiltrating tumors can have important impact on tumor progression and response to therapy. We present an efficient algorithm to simultaneously estimate the fraction of cancer and immune cell types from bulk tumor gene expression data. Our method integrates novel gene expression profiles from each major non-malignant cell type found in tumors, renormalization based on cell-type specific mRNA content, and the ability to consider uncharacterized and possibly highly variable cell types. Feasibility is demonstrated by validation with flow cytometry, immunohistochemistry and single-cell RNA-Seq analyses of human melanoma and colorectal tumor specimens. Altogether, our work not only improves accuracy but also broadens the scope of absolute cell fraction predictions from tumor gene expression data, and provides a unique novel experimental benchmark for immunogenomics analyses in cancer research.


2017 ◽  
Author(s):  
Maxim Zaslavsky ◽  
Jacqueline Buros Novik ◽  
Eliza Chang ◽  
Jeffrey Hammerbacher

AbstractRobust quantification of immune cell infiltration into the tumor microenvironment may shed light on why only a small proportion of patients benefit from checkpoint therapy. The immune cells surrounding a tumor have been suggested to mediate an effective response to immunotherapy. However, traditional measurement of immune cell content around a tumor by immunohistochemistry, flow cytometry, or mass cytometry allows measurement of only up to a few dozen markers at a time, limiting the number of immune cell types identified. Immune cell type abundances may instead be estimated in silico by deconvolving gene expression mixtures from bulk RNA sequencing of tumor tissue. By measuring tens of thousands of transcripts at once, bulk RNA-seq provides a rich input to algorithms that quantify cell type abundances in the tumor microenvironment, affording the potential to quantify the states of a greater number of immune cell types (given adequate training data). Here, we first review existing methods for deconvolution and evaluate their performance on synthetic mixtures. Then we develop a Bayesian inference approach, named infino, that learns to distinguish immune cell expression phenotypes and deconvolve mixtures. In contrast to earlier approaches, infino accepts RNA sequencing data, models transcript expression variability, and exploits the relationships between cell types to improve deconvolution accuracy and allow interrogation from the level of broad categories to the level of finest granularity. The resulting probability distributions of immune infiltration could be applied to numerous questions concerning the diverse ecology of immune cell types, including assessment of the association of immune infiltration with response to immunotherapy, and study of the expression profile and presence of elusive T cell subcompartments, such as T cell exhaustion.


2008 ◽  
Vol 26 (6) ◽  
pp. 877-883 ◽  
Author(s):  
Zhifu Sun ◽  
Dennis A. Wigle ◽  
Ping Yang

Purpose Gene expression profiling for outcome prediction of non–small-cell lung cancer (NSCLC) remains clouded by heterogeneous and unvalidated results. This study applied multivariate approaches to identify and evaluate value-added gene expression signatures in two types of NSCLC. Materials and Methods Two NSCLC oligonucleotide microarray data sets of adenocarcinoma and squamous cell carcinoma were used as training sets to select prognostic genes independent of conventional predictors. The top 50 genes from each set were used to predict the outcomes of two independent validation data sets of 84 and 91 NSCLC cases. Results Adenocarcinomas with the 50-gene signature from adenocarcinoma in both validation data sets had a 2.4-fold (95% CI, 1.3 to 4.4 and 1.0 to 5.8) increased mortality after adjustment for conventional predictors. Squamous cell carcinoma with this high-risk signature had an adjusted risk of 1.1 (95% CI, 0.4 to 3.2) in one data set and 2.5 (95% CI, 1.1 to 5.8) in another consisting of stage I tumors. Adenocarcinoma with the 50-gene signature from squamous cell carcinoma had an elevated risk of 3.5 (95% CI, 1.4 to 9.0) after adjustment for conventional predictors. Squamous cell carcinoma with this high risk signature had an adjusted risk of 1.8 (95% CI, 0.7 to 4.6). Despite the little overlap in individual genes, the two gene signatures had significant functional connectedness in molecular pathways. Conclusion Two non-overlapping but functionally related gene expression signatures provide consistently improved survival prediction for NSCLC regardless of histologic cell type. Multiple sets of genes may exist for NSCLC with predictive value, but ones with independent predictive value beyond clinical predictors will be required for clinical translation.


2021 ◽  
Author(s):  
Asif Zubair ◽  
Richard H. Chapple ◽  
Sivaraman Natarajan ◽  
William C. Wright ◽  
Min Pan ◽  
...  

The disorganization of cell types within tissues underlies many human diseases and has been studied for over a century using the conventional tools of pathology, including tissue-marking dyes such as the H&E stain. Recently, spatial transcriptomics technologies were developed that can measure spatially resolved gene expression directly in pathology-stained tissues sections, revealing cell types and their dysfunction in unprecedented detail. In parallel, artificial intelligence (AI) has approached pathologist-level performance in computationally annotating H&E images of tissue sections. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and AI-based pathology has performed less impressively outside their training datasets. Here, we describe a methodology that can computationally integrate AI-annotated pathology images with spatial transcriptomics data to markedly improve inferences of tissue cell type composition made over either class of data alone. We show that this methodology can identify regions of clinically relevant tumor immune cell infiltration, which is predictive of response to immunotherapy and was missed by an initial pathologist's manual annotation. Thus, combining spatial transcriptomics and AI-based image annotation has the potential to exceed pathologist-level performance in clinical diagnostic applications and to improve the many applications of spatial transcriptomics that rely on accurate cell type annotations.


2021 ◽  
Author(s):  
Yunji Xu ◽  
Guo Huang ◽  
Wen bing Li

Abstract Background: The prognosis of hepatocellular carcinoma (HCC) is closely related to immunity and inflammation, but the value of using immune and inflammation-related genes as predicting the prognosis of HCC requires further research.Methods: The Hepatocellular Carcinomar mRNA data was downloaded in the TCGA and ICGC database. The R package "limma" was used to analyze the differential expression of genes (DEGs) irelated to immune and inflammatory .Univariate Cox analysis screen for immune and inflammation related genes with prognostic value, then construction and verification of the prognostic model in Hepatocellular Carcinomar. The correlation between risk score with tumor immune immersion and immune cell function was assessed through tumor microensure and immune response analysis. NCI-60 cell line to explore the relationship between prognostic gene expression and drug sensitivity.Results: We evaluated 8 immune and inflammatory-related genes to build a prognostic risk prediction model, riskscore is an independent risk factor affecting prognosis, closely related to histological grading and clinical staging. The immune of adCs, macrophages, Tfh cells, Treg cells and Th1 cells higher in the tumor microenvironment leads to poor prognosis of liver cancer. Using data from the NCI-60 cell line, DNASE1L3 high expression may increased resistance of liver cancer cells to bovine platinum, solafinil and bovine platinum. The expression of SLC7A11 can increase the sensitivity of liver cancer to arsenic trioxide (ATO). Simultaneously constructing models and tumor microenvironment and drug resistance may provide effective and safe strategies for HCC chemotherapy and immunotherapy.Conclusion:Our study screened eight immune and inflammation-related genes play an important role in HCC tumor immunity and can be used to predict the prognosis of HCC.


2018 ◽  
Author(s):  
Brian Hie ◽  
Bryan Bryson ◽  
Bonnie Berger

AbstractResearchers are generating single-cell RNA sequencing (scRNA-seq) profiles of diverse biological systems1–4 and every cell type in the human body.5 Leveraging this data to gain unprecedented insight into biology and disease will require assembling heterogeneous cell populations across multiple experiments, laboratories, and technologies. Although methods for scRNA-seq data integration exist6,7, they often naively merge data sets together even when the data sets have no cell types in common, leading to results that do not correspond to real biological patterns. Here we present Scanorama, inspired by algorithms for panorama stitching, that overcomes the limitations of existing methods to enable accurate, heterogeneous scRNA-seq data set integration. Our strategy identifies and merges the shared cell types among all pairs of data sets and is orders of magnitude faster than existing techniques. We use Scanorama to combine 105,476 cells from 26 diverse scRNA-seq experiments across 9 different technologies into a single comprehensive reference, demonstrating how Scanorama can be used to obtain a more complete picture of cellular function across a wide range of scRNA-seq experiments.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3076-3076
Author(s):  
Shengli Ding ◽  
Zhaohui Wang ◽  
Marcos Negrete Obando ◽  
Grecia rivera Palomino ◽  
Tomer Rotstein ◽  
...  

3076 Background: Preclinical models that can recapitulate patients’ intra-tumoral heterogeneity and microenvironment are crucial for tumor biology research and drug discovery. In particular, the ability to retain immune and other stromal cells in the microenvironment is vital for the development of immuno-oncology assays. However, current patient-derived organoid (PDO) models are largely devoid of immune components. Methods: We first developed an automated microfluidic and membrane platform that can generate tens of thousands of micro-organospheres from resected or biopsied clinical tumor specimens within an hour. We next characterized growth rate and drug response of micro-organospheres. Finally, extensive single-cell RNA-seq profiling were performed on both micro-organospheres and original tumor samples from lung, ovarian, kidney, and breast cancer patients. Results: Micro-organospheres derived from clinical tumor samples preserved all original tumor and stromal cells, including fibroblasts and all immune cell types. Single-cell analysis revealed that unsupervised clustering of tumor and non-tumor cells were identical between original tumors and the derived micro-organospheres. Quantification showed similar cell composition and percentages for all cell types and also preserved functional intra-tumoral heterogeneity.. An automated, end-to-end, high-throughput drug screening pipeline demonstrated that matched peripheral blood mononuclear cells (PBMCs) from the same patient added to micro-organospheres can be used to assess the efficacy of immunotherapy moieties. Conclusions: Micro-organospheres are a rapid and scalable platform to preserve patient tumor microenvironment and heterogeneity. This platform will be useful for precision oncology, drug discovery, and immunotherapy development. Funding sources: NIH U01 CA217514, U01 CA214300, Duke Woo Center for Big Data and Precision Health


Sign in / Sign up

Export Citation Format

Share Document