scholarly journals Robust temporal map of human in vitro myelopoiesis using single-cell genomics

2021 ◽  
Author(s):  
Clara Alsinet ◽  
Maria Primo ◽  
Valentina Lorenzi ◽  
Andrew J Knights ◽  
Carmen Sancho-Serra ◽  
...  

Myeloid cells have a central role in homeostasis and tissue defence. Characterising the current in vitro protocols of myelopoiesis is imperative for their use in research and immunotherapy as well as for understanding the early stages of myeloid differentiation in humans. Here, we profiled the transcriptome of more than 400k cells and generated a robust molecular map of the differentiation of human induced pluripotent stem cells (iPSC) into macrophages. By integrating our in vitro datasets with in vivo single-cell developmental atlases, we found that in vitro macrophage differentiation recapitulates features of in vivo yolk sac hematopoiesis, which happens prior to the appearance of definitive hematopoietic stem cells (HSC). During in vitro myelopoiesis, a wide range of myeloid cells are generated, including erythrocytes, mast cells and monocytes, suggesting that, during early human development, the HSC-independent immune wave gives rise to multiple myeloid cell lineages. We leveraged this model to characterize the transition of hemogenic endothelium into myeloid cells, uncovering poorly described myeloid progenitors and regulatory programs. Taking advantage of the variety of myeloid cells produced, we developed a new protocol to produce type 2 conventional dendritic cells (cDC2) in vitro. We found that the underlying regulatory networks coding for myeloid identity are conserved in vivo and in vitro. Using genetic engineering techniques, we validated the effects of key transcription factors important for cDC2 and macrophage identity and ontogeny. This roadmap of early myeloid differentiation will serve as an important resource for investigating the initial stages of hematopoiesis, which are largely unexplored in humans, and will open up new therapeutic opportunities.

Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Abstract Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


Author(s):  
Juan Gao ◽  
Shuaibing Hou ◽  
Shengnan Yuan ◽  
Yuxia Wang ◽  
Yanan Gao ◽  
...  

Myeloid cells have been identified as hematopoietic stem cell (HSC)-regulating cells. However, the mechanisms by which myeloid cells regulate the function of HSCs are not fully defined. Our previous study indicated that the HSCs are over-expanded in Vav1-Cre;Rheb1fl/fl mice. Here, using in vivo and in vitro models, we found that Rheb1-deficient neutrophils remodeled the bone marrow environment and induced expansion of HSCs in vivo. Further studies showed that loss of Rheb1 impaired neutrophils’ ability to secrete IL-6, led mesenchymal stem cells (MSCs) to produce more SCF, and promote HSC proliferation. We further found that IL-6 suppressed SCF mRNA expression in human MSCs. Interesting, the high level of IL-6 was also related with poor survival of chronic myeloid leukemia (CML) patients, and higher expression of IL-6 in CML cells is associated with the lower expression of SCF in MSCs in patients. Our studies suggested that blocking IL-6 signaling pathway might stimulate MSCs to secrete more SCF, and to support hematopoietic stem/progenitor cells proliferation.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1200-1207 ◽  
Author(s):  
Sean P. McDermott ◽  
Kolja Eppert ◽  
Faiyaz Notta ◽  
Methvin Isaac ◽  
Alessandro Datti ◽  
...  

Abstract Gene regulatory networks that govern hematopoietic stem cells (HSCs) and leukemia-initiating cells (L-ICs) are deeply entangled. Thus, the discovery of compounds that target L-ICs while sparing HSC is an attractive but difficult endeavor. Presently, most screening approaches fail to counter-screen compounds against normal hematopoietic stem/progenitor cells (HSPCs). Here, we present a multistep in vitro and in vivo approach to identify compounds that can target L-ICs in acute myeloid leukemia (AML). A high-throughput screen of 4000 compounds on novel leukemia cell lines derived from human experimental leukemogenesis models yielded 80 hits, of which 10 were less toxic to HSPC. We characterized a single compound, kinetin riboside (KR), on AML L-ICs and HSPCs. KR demonstrated comparable efficacy to standard therapies against blast cells in 63 primary leukemias. In vitro, KR targeted the L-IC–enriched CD34+CD38− AML fraction, while sparing HSPC-enriched fractions, although these effects were mitigated on HSC assayed in vivo. KR eliminated L-ICs in 2 of 4 primary AML samples when assayed in vivo and highlights the importance of in vivo L-IC and HSC assays to measure function. Overall, we provide a novel approach to screen large drug libraries for the discovery of anti–L-IC compounds for human leukemias.


Blood ◽  
2020 ◽  
Vol 136 (25) ◽  
pp. 2893-2904 ◽  
Author(s):  
Antonella Fidanza ◽  
Patrick S. Stumpf ◽  
Prakash Ramachandran ◽  
Sara Tamagno ◽  
Ann Babtie ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPCs) develop in distinct waves at various anatomical sites during embryonic development. The in vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates some of these processes; however, it has proven difficult to generate functional hematopoietic stem cells (HSCs). To define the dynamics and heterogeneity of HSPCs that can be generated in vitro from hPSCs, we explored single-cell RNA sequencing (scRNAseq) in combination with single-cell protein expression analysis. Bioinformatics analyses and functional validation defined the transcriptomes of naïve progenitors and erythroid-, megakaryocyte-, and leukocyte-committed progenitors, and we identified CD44, CD326, ICAM2/CD9, and CD18, respectively, as markers of these progenitors. Using an artificial neural network that we trained on scRNAseq derived from human fetal liver, we identified a wide range of hPSC-derived HSPCs phenotypes, including a small group classified as HSCs. This transient HSC-like population decreased as differentiation proceeded, and was completely missing in the data set that had been generated using cells selected on the basis of CD43 expression. By comparing the single-cell transcriptome of in vitro–generated HSC-like cells with those generated within the fetal liver, we identified transcription factors and molecular pathways that can be explored in the future to improve the in vitro production of HSCs.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5004-5004
Author(s):  
Fumio Nakahara ◽  
Sandra Pinho ◽  
Daniel K. Borger ◽  
Qiaozhi Wei ◽  
Maria Maryanovich ◽  
...  

Hematopoietic stem cells (HSCs) are maintained by bone marrow (BM) niches in vivo, but the ability of niche cells to maintain HSCs ex vivo is markedly diminished. Expression of niche factors (Scf, Cxcl12, Vcam1 and Angpt1) by Nestin-GFP+ mesenchymal-derived stem cells (MSCs) is downregulated upon culture and lose its effect of maintaining HSC in vitro, suggesting that transcriptional rewiring may contribute to this reduced potential in cultured MSCs. To gain further insight, we searched RNA sequencing data for transcriptional regulators that were highly expressed in Nestin-GFP+ stroma, revealing 40 potential candidates. We compared the expression of these genes by real-time quantitative PCR (qPCR) in freshly isolated Nestin-GFP+ or Nestin-GFP- BM CD45-Ter119-CD31- cells, with that of cultured Nestin-GFP+ stroma. These analyses yielded 28 candidate genes after the elimination of 12 genes due to non-specific expression or lack of downregulation after culture. We cultured stromal cells isolated from Scf-GFP knock-in mice in which GFP expression reflects endogenous Scf mRNA synthesis. Upon culture, GFP expression was rapidly downregulated in these cells, demonstrating the potential of using GFP to screen for factors capable of revitalizing niche activity in cultured MSCs. We generated lentiviral vectors expressing 28 selected genes and transduced the viral mixture into cultured stromal cells derived from Scf-GFP mice. Five days after transduction, we observed re-emergence of GFP+ cells and these GFP+ cells were sorted and plated in limiting dilutions to isolate single cell-derived clones. Using this approach, we generated 16 independent GFP+ single cell-derived clones. To determine the specific combination of genes that enables cultured stromal cells to regain their capacity to maintain and expand HSCs in vitro, lineage-negative (Lin-) BM cells were co-cultured with each single cell-derived clone or control stroma. Thus, we identified 5 transcription factors (Klf7, Ostf1, Xbp1, Irf3, and Irf7; KOXII) that restored HSC niche function in cultured BM-derived MSCs. These revitalized MSCs (rMSCs) exhibited enhanced synthesis of HSC niche factors while retaining their mesenchymal differentiation capacity. In contrast to HSCs co-cultured with control MSCs, HSCs expanded with rMSCs in vitro showed higher repopulation capacity and enabled lethally irradiated recipient mice to survive better. Competitive reconstitution assays revealed 7-fold expansion of functional HSCs by rMSCs. Moreover, rMSCs prevented the accumulation of DNA damage in cultured HSCs, a hallmark of ageing and replication stress. To investigate the revitalization mechanism, we performed ATAC-seq in freshly sorted Scf-GFP- CD45-Ter119-CD31- cells, Scf-GFP+ CD45-Ter119-CD31- cells, rMSCs and control vector-transduced stroma. We found that revitalization of MSCs led to 9,623 peaks of open chromatin in rMSCs when compared to control MSCs. Of these, 626 open peaks were also detected in freshly isolated Scf-GFP+ cells when compared to Scf-GFP- cells. Motif analyses of the sequence at these 626 peaks revealed that myocyte enhancer factor 2c (Mef2c) was among the most significantly enriched transcription regulators. Mef2c was also expressed at high levels in both rMSCs and freshly isolated Scf-GFP+ cells compared to control cultured MSCs and freshly isolated Scf-GFP- cells by RNA-seq and real-time qPCR. To evaluate the role of Mef2c in rMSCs, we knocked down Mef2c in rMSCs by short hairpin RNA lentiviral transduction (shMef2c). We found that the expression of niche factors (Scf, Cxcl12 and Vcam1) was reduced in shMef2c-transduced compared to parental rMSCs. In addition, shMef2c transduced-rMSCs exhibited reduced (by 43%) capacity to expand HSCs in co-culture compared to shCntrl transduced-rMSCs. These results suggest a role for Mef2c as a downstream effector mediating MSC revitalization. We are now exploring the method to make these rMSCs to form new niches in vivo. Our results suggest that combination of KOXII genes are able to fully restore the niche activity in MSCs ex vivo and establish a new platform that provides critical insight in the regulatory network of the HSC niche leading to the basis toward the engineering of supportive niches for curative cell therapies. Disclosures Wei: Albert Einstein College of Medicine, Inc: Patents & Royalties. Frenette:Albert Einstein College of Medicine, Inc: Patents & Royalties; Ironwood Pharmaceuticals: Research Funding; Cygnal Therapeutics: Equity Ownership; Pfizer: Consultancy.


2019 ◽  
Author(s):  
Eraj Shafiq Khokhar ◽  
Sneha Borikar ◽  
Elizabeth Eudy ◽  
Tim Stearns ◽  
Kira Young ◽  
...  

SummaryAged hematopoietic stem cells (HSCs) undergo biased lineage priming and differentiation toward production of myeloid cells. A comprehensive understanding of gene regulatory mechanisms causing HSC aging is needed to devise new strategies to sustainably improve immune function in aged individuals. Here, a focused shRNA screen of epigenetic factors reveals that the histone acetyltransferase Kat6b regulates myeloid cell production from hematopoietic progenitor cells. Within the stem and progenitor cell compartment, Kat6b is most highly expressed in long-term (LT)-HSCs and is significantly decreased with aging at the transcript and protein levels. Knockdown of Kat6b in young LT-HSCs causes skewed production of myeloid cells both in vitro and in vivo. Transcriptome analysis identifies enrichment of aging and macrophage-associated gene signatures alongside reduced expression of self-renewal and multilineage priming signatures. Together, our work identifies KAT6B as an epigenetic regulator of LT-HSC aging and a novel target to improve aged immune function.


2020 ◽  
Author(s):  
Jinyue Liao ◽  
Hoi Ching Suen ◽  
Alfred Chun Shui Luk ◽  
Annie Wing Tung Lee ◽  
Judy Kin Wing Ng ◽  
...  

AbstractBackgroundEpithelial-mesenchymal transition (EMT) is a phenomenon in which epithelial cells acquire mesenchymal traits. It contributes to organogenesis and tissue homeostasis, as well as stem cell differentiation. Emerging evidence indicates that heterogeneous expression of EMT gene markers presents in sub-populations of germline stem cells (GSCs). However, the functional implications of such heterogeneity are largely elusive.ResultsWe unravelled an EMT-like process in GSCs by in vitro extracellular matrix (ECM) model and single-cell genomics approaches. We found that histone methyltransferase G9a regulated an EMT-like program in GSC in vitro and contributed to neonatal germ cell migration in vivo. Through modulating ECM, we demonstrated that GSCs exist in interconvertible epithelial-like and mesenchymal-like cell states. GSCs gained higher migratory ability after transition to a mesenchymal-like cell state, which was largely mediated by the TGF-β signaling pathway. Dynamics of epigenetic regulation at the single-cell level was also found to align with the EMT-like process. Chromatin accessibility profiles generated by single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) clustered GSCs into epithelial-like and mesenchymal-like states, which were associated with differentiation status. The high-resolution data revealed regulators in the EMT-like process, including transcription factors Zeb1. We further identified putative enhancer-promoter interactions and cis-co-accessibility networks at loci such as Tgfb1, Notch1 and Lin28a. Lastly, we identified HES1 as the putative target underlying G9a’s regulation.ConclusionOur work provides the foundation for understanding the EMT-like process and a comprehensive resource for future investigation of epigenetic regulatory networks in GSCs.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1392-1392
Author(s):  
John M. Perry ◽  
Justin C. Grindley ◽  
Xi He ◽  
Linheng Li

Abstract Self-renewal is the central property of stem cells but remains inadequately defined. Separately, the Pten/Akt and Wnt/β-catenin signaling pathways have been implicated in regulating hematopoietic stem cells (HSCs) and in leukemia development. Using an HSC-specific conditional mutant model, we studied the effects of Pten deletion combined with constitutively active β-catenin. HSC-specific deletion of Pten leads to a relatively moderate HSC expansion in spleen with increased myeloid differentiation. In contrast, HSC-specific activation of β-catenin results in functional failure by differentiation blockage. However, unlike single mutants, double mutant mice exhibit a novel phenotype including dramatic expansion in HSCs without extensive differentiation both in vitro and in vivo. Furthermore, β-catenin deficiency prevents the relatively moderate expansion of HSCs in Pten mutants. Our data reveal that these two pathways interact to coordinately drive HSC proliferation while inhibiting both differentiation and apoptosis. Together, the Pten/Akt and Wnt/β-catenin pathways cooperate to drive self-renewal, with uncontrolled self-renewal leading to leukemia development.


Blood ◽  
2004 ◽  
Vol 104 (6) ◽  
pp. 1662-1670 ◽  
Author(s):  
Roberto M. Lemoli ◽  
Davide Ferrari ◽  
Miriam Fogli ◽  
Lara Rossi ◽  
Cinzia Pizzirani ◽  
...  

Abstract Although extracellular nucleotides support a wide range of biologic responses of mature blood cells, little is known about their effect on blood cell progenitor cells. In this study, we assessed whether receptors for extracellular nucleotides (P2 receptors [P2Rs]) are expressed on human hematopoietic stem cells (HSCs), and whether activation by their natural ligands, adenosine triphosphate (ATP) and uridine triphosphate (UTP), induces HSC proliferation in vitro and in vivo. Our results demonstrated that CD34+ HSCs express functional P2XRs and P2YRs of several subtypes. Furthermore, stimulation of CD34+ cells with extracellular nucleotides caused a fast release of Ca2+ from intracellular stores and an increase in ion fluxes across the plasma membrane. Functionally, ATP and, to a higher extent, UTP acted as potent early acting growth factors for HSCs, in vitro, because they strongly enhanced the stimulatory activity of several cytokines on clonogenic CD34+ and lineage-negative CD34- progenitors and expanded more primitive CD34+-derived long-term culture-initiating cells. Furthermore, xenogenic transplantation studies showed that short-term preincubation with UTP significantly expanded the number of marrow-repopulating HSCs in nonobese diabetic/severe combined immunodeficiency mice. Our data suggest that extracellular nucleotides may provide a novel and powerful tool to modulate HSC functions. (Blood. 2004;104:1662-1670)


Sign in / Sign up

Export Citation Format

Share Document