scholarly journals Dysregulated Transferrin Receptor Disrupts T Cell Iron Homeostasis to Drive Inflammation in Systemic Lupus Erythematosus

2021 ◽  
Author(s):  
Kelsey Voss ◽  
Arissa Young ◽  
Katherine N Gibson-Corley ◽  
Allison E Sewell ◽  
Evan Krystofiak ◽  
...  

T cells in systemic lupus erythematosus (SLE) exhibit mitochondrial abnormalities including elevated oxidative stress. Because excess iron can promote these phenotypes, we tested iron regulation of SLE T cells. A CRISPR screen identified Transferrin Receptor (CD71) as important for Th1 cells but detrimental for induced regulatory T cells (iTreg). Activated T cells induce CD71 to increase iron uptake, but this was exaggerated in T cells from SLE-prone mice which accumulated iron. Treatment of T cells from SLE-prone mice with CD71 blocking antibody reduced intracellular iron and mTORC1 signaling and restored mitochondrial physiology. While Th1 cells were inhibited, CD71 blockade enhanced iTreg. In vivo this treatment reduced pathology and increased IL-10 in SLE-prone mice. Importantly, disease severity correlated with CD71 expression on SLE patient T cells and blocking CD71 enhanced IL-10 secretion. Excess T cell iron uptake thus contributes to T cell dysfunction and can be targeted to correct SLE-associated pathology.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1365.2-1365
Author(s):  
X. Fan ◽  
D. Guo ◽  
C. T. Ng ◽  
A. Law ◽  
Z. Y. Poon ◽  
...  

Background:Patients with systemic lupus erythematosus (SLE) suffer from severe morbidity and mortality1-4, either from the disease itself or from side effects of immunosuppression5. Discovery of novel effective therapies with less toxicity is an urgent need.Objectives:The aim of this study is to elucidate the therapeutic potential and working mechanism of cytokine CXCL5 in lupus mice.Methods:Treatment with CXCL5, bone marrow (BM)-MSCs, standard of care (SOC) with combination of methylprednisolone and cyclophosphamide was given to 16-week-old Faslprmice. Mice were monitored for 10 weeks. Splenic immune cell subsets were measured by flow cytometry. Circulating cytokine and immunoglobulin were detected by Luminex technology. Renal function was evaluated by urinary spot albumin creatinine ratio. In situ renal immune cell infiltration and complement 3 deposition were detected by Haematoxylin and Eosin (H&E) staining and immunohistochemistry.Results:CXCL5 demonstrated consistent and potent immunosuppressive capacity in suppressing SLE with reduced autoantibody secretion, lymphoproliferation and preserved kidney function. With further exploration, we proved that CXCL5 reduced the proliferation of helper T cells (TH1 and TH2) in thein vitrofunctional assay. When we administrated CXCL5 to lupus mice, it promoted the proliferation of regulatory T cells and reduced the proliferation of TH17 cells, macrophages and neutrophils. Multiple proinflammatory cytokines including IL-2, IL-6, IL-12, IL-17A, KC/CXCL1, MIP-1β/CCL4 and TNF-α were also reduced. When combined with SOC, CXCL5 boosted its therapeutic effect and reduced the relevant indices of disease activity. When we correlated the effect of four different treatment groups (CXCL5, BM-MSCs, SOC, and CXCL5 plus SOC) on mice survival and target cell changes, we found that TH17 cells were the key effector cells involved in the pathogenesis of SLE.Conclusion:These findings demonstrated that CXCL5 dampens inflammation in the pre-clinical model of systemic lupus erythematosus via the orchestral effect of regulating neutrophil trafficking and suppressing helper T cell-mediated immune response. Administrating exogenous CXCL5 might be an attractive option to treat patients with lupus.References:[1]Ji S, Guo Q, Han Y, Tan G, Luo Y, Zeng F. Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3beta signaling pathway in T cells from systemic lupus erythematosus mice.Cell Physiol Biochem.2012;29(5-6):705-712.[2]Peng SL. Altered T and B lymphocyte signaling pathways in lupus.Autoimmun Rev.2009;8(3):179-183.[3]Ferucci ED, Johnston JM, Gaddy JR, et al. Prevalence and incidence of systemic lupus erythematosus in a population-based registry of American Indian and Alaska Native people, 2007-2009.Arthritis Rheumatol.2014;66(9):2494-2502.[4]Jakes RW, Bae SC, Louthrenoo W, Mok CC, Navarra SV, Kwon N. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: prevalence, incidence, clinical features, and mortality.Arthritis Care Res (Hoboken).2012;64(2):159-168.[5]Sattwika PD, Mustafa R, Paramaiswari A, Herningtyas EH. Stem cells for lupus nephritis: a concise review of current knowledge.Lupus.2018;27(12):1881-1897.Acknowledgments:The work was supported by SMART II Centre Grant (NMRC/CG/M011/2017_SGH) and SingHealth Foundation (SHF/FG638P/2016).Disclosure of Interests:None declared


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Norzawani Buang ◽  
Lunnathaya Tapeng ◽  
Victor Gray ◽  
Alessandro Sardini ◽  
Chad Whilding ◽  
...  

AbstractThe majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these ‘SLE-like’ conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Liuye Huang ◽  
Yuan Yang ◽  
Yu Kuang ◽  
Dapeng Wei ◽  
Wanyi Li ◽  
...  

Objective. Systemic lupus erythematosus (SLE) is an autoimmune disease identified by a plethora of production of autoantibodies. Autoreactive T cells may play an important role in the process. Attenuated T cell vaccination (TCV) has proven to benefit some autoimmune diseases by deleting or suppressing pathogenic T cells. However, clinical evidence for TCV in SLE is still limited. Therefore, this self-controlled study concentrates on the clinical effects of TCV on SLE patients. Methods. 16 patients were enrolled in the study; they accepted TCV regularly. SLEDAI, clinical symptoms, blood parameters including complements 3 and 4 levels, ANA, and anti-ds-DNA antibodies were tested. In addition, the side effects and drug usage were observed during the patients’ treatment and follow-up. Results. Remissions in clinical symptoms such as facial rash, vasculitis, and proteinuria were noted in most patients. There are also evident reductions in SLEDAI, anti-ds-DNA antibodies, and GC dose and increases in C3 and C4 levels, with no pathogenic side effects during treatment and follow-up. Conclusions. T cell vaccination is helpful in alleviating and regulating systemic lupus erythematosus manifestation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Haiyan Zhou ◽  
Bojiang Li ◽  
Jing Li ◽  
Tongqian Wu ◽  
Xiaoqian Jin ◽  
...  

Accumulating evidence indicates a critical role for T cells and relevant cytokines in the pathogenesis of systemic lupus erythematosus (SLE). However, the specific contribution of T cells together with the related circulating cytokines in disease pathogenesis and organ involvement is still not clear. In the current study, we investigated relevant molecule expressions and cytokine levels in blood samples from 49 SLE patients and 22 healthy control subjects. The expression of HLA-DR and costimulatory molecules on T cells was evaluated by flow cytometry. Concentrations of serum C-reactive protein, erythrocyte sedimentation rate, anti-double-stranded DNA (anti-dsDNA) antibody, total lgG, complement 3, and complement 4 were measured. Serum cytokines and chemokines were measured by a cytometric bead array assay. Elevated frequencies of HLA-DR+ T cells and ICOS+ T cells were observed in SLE patients with positive anti-dsDNA antibodies compared with those in healthy controls (P<0.001). The expression of HLA-DR+ T cells was positively correlated with SLEDAI (r=0.15, P<0.01). Furthermore, levels of serum IL-6, MCP-1, TNFRI, IL-10, IL-12, and CCL20 were higher in SLE patients compared with healthy controls. In addition, patients with hematologic manifestations displayed elevated frequencies of HLA-DR+ T cells and ICOS+ T cells. Patients with renal manifestations had a decreased frequency of TIGIT+ T cells. These results suggested a dysregulated T cell activity and cytokine expression profiles in SLE subjects. We also developed a chemokine and cytokine profiling strategy to predict the activity of SLE, which has clinical implication for better monitoring the flares and remission during the course of SLE and for assessing therapeutic interventions.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1433 ◽  
Author(s):  
Chuang ◽  
Tan

T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE), which is a severe autoimmune disease. In the past 60 years, only one new therapeutic agent with limited efficacy has been approved for SLE treatment; therefore, the development of early diagnostic biomarkers and therapeutic targets for SLE is desirable. Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) and dual-specificity phosphatases (DUSPs) are regulators of MAP kinases. Several MAP4Ks and DUSPs are involved in T-cell signaling and autoimmune responses. HPK1 (MAP4K1), DUSP22 (JKAP), and DUSP14 are negative regulators of T-cell activation. Consistently, HPK1 and DUSP22 are downregulated in the T cells of human SLE patients. In contrast, MAP4K3 (GLK) is a positive regulator of T-cell signaling and T-cell-mediated immune responses. MAP4K3 overexpression-induced RORγt–AhR complex specifically controls interleukin 17A (IL-17A) production in T cells, leading to autoimmune responses. Consistently, MAP4K3 and the RORγt–AhR complex are overexpressed in the T cells of human SLE patients, as are DUSP4 and DUSP23. In addition, DUSPs are also involved in either human autoimmune diseases (DUSP2, DUSP7, DUSP10, and DUSP12) or T-cell activation (DUSP1, DUSP5, and DUSP14). In this review, we summarize the MAP4Ks and DUSPs that are potential biomarkers and/or therapeutic targets for SLE.


2019 ◽  
Vol 20 (18) ◽  
pp. 4455 ◽  
Author(s):  
Enikő Szabó ◽  
Ákos Hornung ◽  
Éva Monostori ◽  
Márta Bocskai ◽  
Ágnes Czibula ◽  
...  

Altered cell surface glycosylation in congenital and acquired diseases has been shown to affect cell differentiation and cellular responses to external signals. Hence, it may have an important role in immune regulation; however, T cell surface glycosylation has not been studied in systemic lupus erythematosus (SLE), a prototype of autoimmune diseases. Analysis of the glycosylation of T cells from patients suffering from SLE was performed by lectin-binding assay, flow cytometry, and quantitative real-time PCR. The results showed that resting SLE T cells presented an activated-like phenotype in terms of their glycosylation pattern. Additionally, activated SLE T cells bound significantly less galectin-1 (Gal-1), an important immunoregulatory lectin, while other lectins bound similarly to the controls. Differential lectin binding, specifically Gal-1, to SLE T cells was explained by the increased gene expression ratio of sialyltransferases and neuraminidase 1 (NEU1), particularly by elevated ST6 beta-galactosamide alpha-2,6-sialyltranferase 1 (ST6GAL1)/NEU1 and ST3 beta-galactoside alpha-2,3-sialyltransferase 6 (ST3GAL6)/NEU1 ratios. These findings indicated an increased terminal sialylation. Indeed, neuraminidase treatment of cells resulted in the increase of Gal-1 binding. Altered T cell surface glycosylation may predispose the cells to resistance to the immunoregulatory effects of Gal-1, and may thus contribute to the pathomechanism of SLE.


2006 ◽  
Vol 18 (7) ◽  
pp. 1189-1196 ◽  
Author(s):  
Keiko Yoshimoto ◽  
Yasue Takahashi ◽  
Mie Ogasawara ◽  
Yumiko Setoyama ◽  
Katsuya Suzuki ◽  
...  

Lupus ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 45-51
Author(s):  
Stefan Vordenbäumen ◽  
Anna Rosenbaum ◽  
Claudia Gebhard ◽  
Johanna Raithel ◽  
Alexander Sokolowski ◽  
...  

Objective To comprehensively assess associations of site-specific CD4+-T-cell hypomethylation of the CD40-Ligand gene ( CD40L) with disease activity of women with systemic lupus erythematosus (SLE). Methods CpG-sites within the DNA of the promotor and two enhancer regions (n = 22) of CD40L were identified and numbered consecutively. The rate of methylated DNA in isolated CD4+-T-cells of women with SLE were quantified for each methylation site by MALDI-TOF. Disease activity was assessed by SLE Disease Activity Index (SLEDAI). Associations of site-specific methylation rates with the SLEDAI scores were assessed by linear regression modelling. P values were adjusted according to Bonferroni-Holm as indicated. Results 60 female SLE patients participated in the study (age 45.7 ± 11.1 years, disease duration 17.0 ± 8.3 years). Significant associations to the SLEDAI were noted for CpG22 hypomethylation of the promotor (β = −40.1, p = 0.017, adjusted p = 0.027), trends were noted for CpG17 hypomethylation of the promotor (β = −30.5, p = 0.032, adjusted p = 0.6), and for CpG11 hypermethylation of the second enhancer (β = 15.0, p = 0.046, adjusted p = 0.8). Conclusion Site-specific hypomethylation of the CD40L promotor in CD4+-T-cells show associations with disease activity in female SLE patients.


Sign in / Sign up

Export Citation Format

Share Document