scholarly journals Prioritizing interventions for preventing COVID-19 outbreaks in military basic training

Author(s):  
Guido Felipe Camargo Espana ◽  
Alex Perkins ◽  
Simon Pollett ◽  
Morgan Smith ◽  
Sean M Moore ◽  
...  

Like other congregate living settings, military basic training has been subject to outbreaks of COVID-19. We sought to identify improved strategies for preventing outbreaks in this setting using an agent-based model of a hypothetical cohort of trainees on a U.S. Army post. Our analysis revealed unique aspects of basic training that require customized approaches to outbreak prevention, which draws attention to the possibility that customized approaches may be necessary in other settings, too. In particular, we showed that introductions by trainers and support staff may be a major vulnerability, given that those individuals remain at risk of community exposure throughout the training period. We also found that increased testing of trainees upon arrival could actually increase the risk of outbreaks, given the potential for false-positive test results to lead to susceptible individuals becoming infected in group isolation and seeding outbreaks in training units upon release. Until an effective transmission-blocking vaccine is adopted at high coverage by individuals involved with basic training, need will persist for non-pharmaceutical interventions to prevent outbreaks in military basic training. Ongoing uncertainties about virus variants and breakthrough infections necessitate continued vigilance in this setting, even as vaccination coverage increases.

2020 ◽  
Author(s):  
Guido España ◽  
Andrew J. Leidner ◽  
Stephen Waterman ◽  
T. Alex Perkins

ABSTRACTAn effective and widely used vaccine could reduce the burden of dengue virus (DENV) around the world. DENV is endemic in Puerto Rico, where the dengue vaccine CYD-TDV is currently under consideration as a control measure. CYD-TDV has demonstrated efficacy in clinical trials in vaccinees who had prior dengue infection. However, in vaccinees who had no prior dengue infection, the vaccine had a modestly elevated risk of hospitalization and severe disease. The WHO therefore recommended a strategy of pre-vaccination screening and vaccination of seropositive persons. To estimate the cost-effectiveness and benefits of this intervention (i.e., screening and vaccination of seropositive persons) in Puerto Rico, we simulated 10 years of the intervention in 9-year-olds using an agent-based model. Across the entire population, we found that 5.5% (4.6%-6.3%) of dengue hospitalizations could be averted. However, we also found that 1.6 (1.3 - 2.1) additional hospitalizations could occur for every 1,000 DENV-naïve children who were vaccinated following a false-positive test results for prior exposure. The ratio of the averted hospitalizations among all vaccinees to additional hospitalizations among DENV-naïve vaccinees was estimated to be 19 (13-24). At a base case cost of vaccination of 382 USD, we found an incremental cost-effectiveness ratio of 122,000 USD per QALY gained. Our estimates can provide information for considerations to introduce the CYD-TDV vaccine in Puerto Rico.


2015 ◽  
Vol 2 (4) ◽  
Author(s):  
Carlos G. Grijalva ◽  
Richard G. Wunderink ◽  
Yuwei Zhu ◽  
Derek J. Williams ◽  
Robert Balk ◽  
...  

Abstract During an etiology study of adults hospitalized for pneumonia, in which urine specimens were examined for serotype-specific pneumococcal antigen detection, we observed that some patients received 23-valent pneumococcal polysaccharide vaccine before urine collection. Some urine samples became positive for specific vaccine pneumococcal serotypes shortly after vaccination, suggesting false-positive test results.


2020 ◽  
Vol 9 (9) ◽  
pp. 549
Author(s):  
Navid Mahdizadeh Gharakhanlou ◽  
Navid Hooshangi ◽  
Marco Helbich

Malaria threatens the lives of many people throughout the world. To counteract its spread, knowledge of the prevalence of malaria and the effectiveness of intervention strategies is of great importance. The aim of this study was to assess (1) the spread of malaria by means of a spatial agent-based model (ABM) and (2) the effectiveness of several interventions in controlling the spread of malaria. We focused on Sarbaz county in Iran, a malaria-endemic area where the prevalence rate is high. Our ABM, which was carried out in two steps, considers humans and mosquitoes along with their attributes and behaviors as agents, while the environment is made up of diverse environmental factors, namely air temperature, relative humidity, vegetation, altitude, distance from rivers and reservoirs, and population density, the first three of which change over time. As control interventions, we included long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). The simulation results showed that applying LLINs and IRS in combination, rather than separately, was most efficient in reducing the number of infected humans. In addition, LLINs and IRS with moderate or high and high coverage rates, respectively, had significant effects on reducing the number of infected humans when applied separately. Our results can assist health policymakers in selecting appropriate intervention strategies in Iran to reduce malaria transmission.


2020 ◽  
Vol 308 ◽  
pp. 110165
Author(s):  
Megan M. Foley ◽  
Catherine O. Brown ◽  
Christian G. Westring ◽  
Phillip B. Danielson ◽  
Heather E. McKiernan

Parasitology ◽  
2016 ◽  
Vol 143 (2) ◽  
pp. 187-198 ◽  
Author(s):  
WILL J. R. STONE ◽  
KATHLEEN W. DANTZLER ◽  
SANDRA K. NILSSON ◽  
CHRIS J. DRAKELEY ◽  
MATTHIAS MARTI ◽  
...  

SUMMARYGametocytes are the specialized form ofPlasmodiumparasites that are responsible for human-to-mosquito transmission of malaria. Transmission of gametocytes is highly effective, but represents a biomass bottleneck for the parasite that has stimulated interest in strategies targeting the transmission stages separately from those responsible for clinical disease. Studying targets of naturally acquired immunity against transmission-stage parasites may reveal opportunities for novel transmission reducing interventions, particularly the development of a transmission blocking vaccine (TBV). In this review, we summarize the current knowledge on immunity against the transmission stages ofPlasmodium. This includes immune responses against epitopes on the gametocyte-infected erythrocyte surface during gametocyte development, as well as epitopes present upon gametocyte activation in the mosquito midgut. We present an analysis of historical data on transmission reducing immunity (TRI), as analysed in mosquito feeding assays, and its correlation with natural recognition of sexual stage specific proteins Pfs48/45 and Pfs230. Although high antibody titres towards either one of these proteins is associated with TRI, the presence of additional, novel targets is anticipated. In conclusion, the identification of novel gametocyte-specific targets of naturally acquired immunity against different gametocyte stages could aid in the development of potential TBV targets and ultimately an effective transmission blocking approach.


2015 ◽  
Vol 175 (2) ◽  
pp. 161
Author(s):  
Simina R. Luca ◽  
Mandana Kayedi ◽  
Brian M. Wong

Sign in / Sign up

Export Citation Format

Share Document