scholarly journals Machupo virus with mutations in the transmembrane domain and glycosylation sites is attenuated and immunogenic in animal models of Bolivian Hemorrhagic Fever

2021 ◽  
Author(s):  
Emily K Mantlo ◽  
Junki Maruyama ◽  
John T Manning ◽  
Timothy G Wanninger ◽  
Cheng Huang ◽  
...  

AbstractSeveral highly pathogenic mammarenaviruses cause severe hemorrhagic and neurologic disease in humans, for which vaccines and antivirals are limited or unavailable. New World (NW) mammarenavirus Machupo virus (MACV) infection causes Bolivian hemorrhagic fever in humans. We previously reported that the disruption of specific N-linked glycan sites on the glycoprotein (GPC) partially attenuate MACV in an IFN-αβ/γ receptor knockout mouse model. However, some capability to induce neurological pathology still remained. Highly pathogenic Junin virus (JUNV) is another NW arenavirus closely related to MACV. A F427I substitution in the GPC transmembrane domain (TMD) rendered JUNV attenuated in a lethal mouse model after intracranial inoculation. In this study, we rationally designed and rescued a MACV containing mutations at two glycosylation sites and the corresponding F438I substitution in GPC TMD. The MACV mutant is fully attenuated in IFN-αβ/γ receptor knockout mice and outbred guinea pigs. Furthermore, inoculation with this mutant MACV fully protected guinea pigs from wild-type MACV lethal challenge. Lastly, we found the GPC TMD F438I substitution greatly impaired MACV growth in neuronal cell lines of mouse and human origins. Our results highlight the critical roles of the glycans and the TMD on the GPC in arenavirus virulence, which informs the rational design of potential vaccine candidates for highly pathogenic arenaviruses.ImportanceFor arenaviruses, the only vaccine available is the live-attenuated Candid#1 vaccine, a JUNV vaccine approved in Argentina. We and others have found that the glycans on GPC and the F427 residue in the GPC TMD are important for virulence of JUNV. Nevertheless, mutating either of them is not sufficient for full and stable attenuation of JUNV. Using reverse genetics, we disrupted specific glycosylation sites on MACV GPC, and also introduced the corresponding F438I substitution in the GPC TMD. This MACV mutant is fully attenuated in two animal models and protects animals from lethal infection. Thus, our studies highlight the feasibility of rational attenuation of highly pathogenic arenaviruses for vaccine development. Another important finding from this study is that the F438I substitution in GPC TMD could substantially affect MACV replication in neurons. Future studies are warranted to elucidate the underlying mechanism and the implication of this mutation in arenavirus neural tropism.

2015 ◽  
Vol 90 (3) ◽  
pp. 1290-1297 ◽  
Author(s):  
Takaaki Koma ◽  
Michael Patterson ◽  
Cheng Huang ◽  
Alexey V. Seregin ◽  
Payal D. Maharaj ◽  
...  

ABSTRACTMachupo virus (MACV) is the causative agent of Bolivian hemorrhagic fever. Our previous study demonstrated that a MACV strain with a single amino acid substitution (F438I) in the transmembrane domain of glycoprotein is attenuated but genetically unstable in mice. MACV is closely related to Junin virus (JUNV), the causative agent of Argentine hemorrhagic fever. Others and our group have identified the glycoprotein to be the major viral factor determining JUNV attenuation. In this study, we tested the compatibility of the glycoprotein of the Candid#1 live-attenuated vaccine strain of JUNV in MACV replication and its ability to attenuate MACVin vivo. Recombinant MACV with the Candid#1 glycoprotein (rMACV/Cd#1-GPC) exhibited growth properties similar to those of Candid#1 and was genetically stablein vitro. In a mouse model of lethal infection, rMACV/Cd#1-GPC was fully attenuated, more immunogenic than Candid#1, and fully protective against MACV infection. Therefore, the MACV strain expressing the glycoprotein of Candid#1 is safe, genetically stable, and highly protective against MACV infection in a mouse model.IMPORTANCECurrently, there are no FDA-approved vaccines and/or treatments for Bolivian hemorrhagic fever, which is a fatal human disease caused by MACV. The development of antiviral strategies to combat viral hemorrhagic fevers, including Bolivian hemorrhagic fever, is one of the top priorities of the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. Here, we demonstrate for the first time that MACV expressing glycoprotein of Candid#1 is a safe, genetically stable, highly immunogenic, and protective vaccine candidate against Bolivian hemorrhagic fever.


2019 ◽  
Vol 3 (4) ◽  
pp. 319-328

Th is review is dedicated to the peculiarities of pathogenesis of the experimental Bolivian hemorrhagic fever (BHF) – the disease, caused by Machupo virus (Arenaviridae family). Th e authors come to the conclusion that for carrying out preclinical researches of the medical means of protection (MMP) in vivo on small laboratory animals it is expedient to use guinea pigs, infected with a strain of Chicava or with a variant of Carvallo strain, adapted for these animals. Th e use of guinea pigs as small laboratory animals when studying pathogenesis of the disease caused by Machupo virus allows to carry out statistically reliable defi nition of quantitative indices of an experimental infection and to select medicines for the fi nal stage of preclinical assessment. As arenaviruses block the process of formation of interferon (IFN) in the infected organism, mice, defective by IFN formation, are the perspective animal models for the study of BHF pathogenesis and may be used for the study of attenuated variants of Machupo virus. Th e Javanese macaques (Macaca fascicularis) are the laboratory animals, modeling the pathogenetic manifestations of BHF in humans. Th ey can be used when carrying out the fi nal stages of preclinical assessment of means of medical protection


2021 ◽  
Vol 17 (3) ◽  
pp. e1009356
Author(s):  
Takaaki Koma ◽  
Cheng Huang ◽  
Adrian Coscia ◽  
Steven Hallam ◽  
John T. Manning ◽  
...  

Several arenaviruses cause hemorrhagic fevers in humans with high case fatality rates. A vaccine named Candid#1 is available only against Junin virus (JUNV) in Argentina. Specific N-linked glycans on the arenavirus surface glycoprotein (GP) mask important epitopes and help the virus evade antibody responses. However the role of GPC glycans in arenavirus pathogenicity is largely unclear. In a lethal animal model of hemorrhagic fever-causing Machupo virus (MACV) infection, we found that a chimeric MACV with the ectodomain of GPC from Candid#1 vaccine was partially attenuated. Interestingly, mutations resulting in acquisition of N-linked glycans at GPC N83 and N166 frequently occurred in late stages of the infection. These glycosylation sites are conserved in the GPC of wild-type MACV, indicating that this is a phenotypic reversion for the chimeric MACV to gain those glycans crucial for infection in vivo. Further studies indicated that the GPC mutant viruses with additional glycans became more resistant to neutralizing antibodies and more virulent in animals. On the other hand, disruption of these glycosylation sites on wild-type MACV GPC rendered the virus substantially attenuated in vivo and also more susceptible to antibody neutralization, while loss of these glycans did not affect virus growth in cultured cells. We also found that MACV lacking specific GPC glycans elicited higher levels of neutralizing antibodies against wild-type MACV. Our findings revealed the critical role of specific glycans on GPC in arenavirus pathogenicity and have important implications for rational design of vaccines against this group of hemorrhagic fever-causing viruses.


2014 ◽  
Vol 14 (10) ◽  
pp. 903-912 ◽  
Author(s):  
Yeon-Jeong Kim ◽  
Sang-Gu Yeo ◽  
Jae-Hak Park ◽  
Hyun-Jeong Ko

2015 ◽  
Vol 53 (1) ◽  
pp. 190-199 ◽  
Author(s):  
T. M. Bell ◽  
T. E. Bunton ◽  
C. I. Shaia ◽  
J. W. Raymond ◽  
S. P. Honnold ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aleksandar Antanasijevic ◽  
Leigh M. Sewall ◽  
Christopher A. Cottrell ◽  
Diane G. Carnathan ◽  
Luis E. Jimenez ◽  
...  

AbstractEngineered ectodomain trimer immunogens based on BG505 envelope glycoprotein are widely utilized as components of HIV vaccine development platforms. In this study, we used rhesus macaques to evaluate the immunogenicity of several stabilized BG505 SOSIP constructs both as free trimers and presented on a nanoparticle. We applied a cryoEM-based method for high-resolution mapping of polyclonal antibody responses elicited in immunized animals (cryoEMPEM). Mutational analysis coupled with neutralization assays were used to probe the neutralization potential at each epitope. We demonstrate that cryoEMPEM data can be used for rapid, high-resolution analysis of polyclonal antibody responses without the need for monoclonal antibody isolation. This approach allowed to resolve structurally distinct classes of antibodies that bind overlapping sites. In addition to comprehensive mapping of commonly targeted neutralizing and non-neutralizing epitopes in BG505 SOSIP immunogens, our analysis revealed that epitopes comprising engineered stabilizing mutations and of partially occupied glycosylation sites can be immunogenic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
O. Ajibola ◽  
M. F. Diop ◽  
A. Ghansah ◽  
L. Amenga-Etego ◽  
L. Golassa ◽  
...  

AbstractGenetic diversity of surface exposed and stage specific Plasmodium falciparum immunogenic proteins pose a major roadblock to developing an effective malaria vaccine with broad and long-lasting immunity. We conducted a prospective genetic analysis of candidate antigens (msp1, ama1, rh5, eba175, glurp, celtos, csp, lsa3, Pfsea, trap, conserved chrom3, hyp9, hyp10, phistb, surfin8.2, and surfin14.1) for malaria vaccine development on 2375 P. falciparum sequences from 16 African countries. We described signatures of balancing selection inferred from positive values of Tajima’s D for all antigens across all populations except for glurp. This could be as a result of immune selection on these antigens as positive Tajima’s D values mapped to regions with putative immune epitopes. A less diverse phistb antigen was characterised with a transmembrane domain, glycophosphatidyl anchors between the N and C- terminals, and surface epitopes that could be targets of immune recognition. This study demonstrates the value of population genetic and immunoinformatic analysis for identifying and characterising new putative vaccine candidates towards improving strain transcending immunity, and vaccine efficacy across all endemic populations.


2010 ◽  
Vol 84 (21) ◽  
pp. 11089-11100 ◽  
Author(s):  
Dennis A. Bente ◽  
Judie B. Alimonti ◽  
Wun-Ju Shieh ◽  
Gaëlle Camus ◽  
Ute Ströher ◽  
...  

ABSTRACT Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV) causes a severe hemorrhagic syndrome in humans but not in its vertebrate animal hosts. The pathogenesis of the disease is largely not understood due to the lack of an animal model. Laboratory animals typically show no overt signs of disease. Here, we describe a new small-animal model to study CCHFV pathogenesis that manifests clinical disease, similar to that seen in humans, without adaptation of the virus to the host. Our studies revealed that mice deficient in the STAT-1 signaling molecule were highly susceptible to infection, succumbing within 3 to 5 days. After CCHFV challenge, mice exhibited fever, leukopenia, thrombocytopenia, and highly elevated liver enzymes. Rapid viremic dissemination and extensive replication in visceral organs, mainly in liver and spleen, were associated with prominent histopathologic changes in these organs. Dramatically elevated proinflammatory cytokine levels were detected in the blood of the animals, suggestive of a cytokine storm. Immunologic analysis revealed delayed immune cell activation and intensive lymphocyte depletion. Furthermore, this study also demonstrated that ribavirin, a suggested treatment in human cases, protects mice from lethal CCHFV challenge. In conclusion, our data demonstrate that the interferon response is crucial in controlling CCHFV replication in this model, and this is the first study that offers an in-depth in vivo analysis of CCHFV pathophysiology. This new mouse model exhibits key features of fatal human CCHF, proves useful for the testing of therapeutic strategies, and can be used to study virus attenuation.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 275
Author(s):  
Bryce M. Warner

Viral hemorrhagic fever viruses come from a wide range of virus families and are a significant cause of morbidity and mortality worldwide each year. Animal models of infection with a number of these viruses have contributed to our knowledge of their pathogenesis and have been crucial for the development of therapeutics and vaccines that have been approved for human use. Most of these models use artificially high doses of virus, ensuring lethality in pre-clinical drug development studies. However, this can have a significant effect on the immune response generated. Here I discuss how the dose of antigen or pathogen is a critical determinant of immune responses and suggest that the current study of viruses in animal models should take this into account when developing and studying animal models of disease. This can have implications for determination of immune correlates of protection against disease as well as informing relevant vaccination and therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document