scholarly journals Arginine-Vasopressin Expressing Neurons in the Murine Suprachiasmatic Nucleus Exhibit a Circadian Rhythm in Network Coherence in vivo

2021 ◽  
Author(s):  
Adam Stowie ◽  
Zhimei Qiao ◽  
Daniella Do Carmo Buonfiglio ◽  
J. Christopher Ehlen ◽  
Morris Benveniste ◽  
...  

AbstractThe Suprachiasmatic Nucleus (SCN) is composed of functionally distinct sub-populations of GABAergic neurons such as vasoactive intestinal polypeptide (VIP)-, arginine vasopressin (AVP)-, gastrin releasing peptide (GRP)-, and neuromedin S (NMS)-expressing neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons or neuronal sub-populations and which aspects result from neuronal interaction within a network. In this study, we address this question utilizing in vivo miniaturized microscopy to measure fluorescent GCaMP-mediated calcium dynamics in AVP neurons in the intact SCN of awake, behaving mice. This approach permits analysis of rhythms of single cells, populations, and correlational analysis among groups of AVP neurons in a field of view across the circadian and diurnal day and night. We report that AVP neurons in the murine SCN exhibit a periodic oscillatory increase in calcium of approximately 14 seconds across the day and night, in both constant darkness and under a 12:12 light-dark (LD) cycle. Using in vivo optogentically-targeted single unit activity recording, we demonstrated that these slow calcium waves are likely the result of burst-firing characteristic of AVP neurons previously reported for other brain regions. Rhythmicity analysis of several fluorescence measures suggests that individual AVP neurons exhibit unstable and stochastic rhythms, with approximately 30% of the neurons rhythmic during any given day across lighting conditions, and weak or absent rhythmicity at the population level. Network-level cross-correlational analysis revealed that coherence among neuron pairs also exhibited stochastic rhythms with about 25% of pairs rhythmic at any time. Notably, this analysis revealed a stronger rhythm at the population level than was observed in single cell analysis. The peak time of maximal coherence among AVP neuronal pairs occurs between CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity with the SCN as a whole. These results are the first to demonstrate robust circadian variation in the coordination between apparently weakly rhythmic or arrhythmic neurons suggesting that, for AVP neurons, interactions between neurons in the SCN are more influential than individual or single subpopulation activity in the regulation of mammalian circadian rhythms.

2020 ◽  
Vol 129 (1) ◽  
pp. 49-57
Author(s):  
Benton S. Purnell ◽  
Gordon F. Buchanan

It has long been appreciated that breathing is altered by time of day. This study demonstrates that rhythmicity in breathing persists in constant darkness but is dependent on the suprachiasmatic nucleus in the hypothalamus. Understanding circadian rhythms in breathing may be important for the treatment and prevention of diseases such as sleep apnea and sudden unexpected death in epilepsy.


1994 ◽  
Vol 24 (1-4) ◽  
pp. 179-184 ◽  
Author(s):  
Felino Ramon A. Cagampang ◽  
Jing Yang ◽  
Yasuhisa Nakayama ◽  
Chiaki Fukuhara ◽  
Shin-Ichi T. Inouye

2018 ◽  
Author(s):  
Yani Zheng ◽  
Yongbo Xue ◽  
Xingjie Ren ◽  
Xiao-Jun Xie ◽  
Mengmeng Liu ◽  
...  

AbstractPost-translational modification of histones, such as histone methylation controlled by specific methyltransferases and demethylases, play critical roles in modulating chromatin dynamics and transcription in eukaryotes. Misregulation of histone methylation can lead to aberrant gene expression, thereby contributing to abnormal development and diseases such as cancer. As such, the mammalian lysine-specific demethylase 2 (KDM2) homologs, KDM2A and KDM2B, are either oncogenic or tumor suppressive, depending on specific pathological contexts. However, the role of KDM2 proteins during development in the whole organisms remains poorly understood. Unlike vertebrates, Drosophila has only one KDM2 homolog (dKDM2), but its functions in vivo remain elusive due to the complexities of the existing mutant alleles. To address this problem, we have generated two dKdm2 null alleles using the CRISPR/Cas9 technique. These dKdm2 homozygous mutants are fully viable and fertile, with no developmental defects observed under laboratory conditions. However, the dKdm2 null mutant adults display defects in circadian rhythms. Most of the dKdm2 mutants become arrhythmic under constant darkness, while the circadian period of the rhythmic mutant flies is approximately one hour shorter than the control. Interestingly, opposite defects are observed when dKDM2 is overexpressed in circadian pacemaker neurons. Taken together, these results demonstrate that dKdm2 is not essential for viability; instead, dKDM2 protein plays important roles in regulating circadian rhythms in Drosophila. Further analyses of the molecular mechanisms of how dKDM2 and its orthologs in vertebrates regulate circadian rhythms will advance our understanding of the epigenetic regulations of circadian clocks.


Stroke ◽  
2021 ◽  
Author(s):  
Darcy Lidington ◽  
Hoyee Wan ◽  
Danny D. Dinh ◽  
Chloe Ng ◽  
Steffen-Sebastian Bolz

Background and Purpose: Circadian rhythms influence the extent of brain injury following subarachnoid hemorrhage (SAH), but the mechanism is unknown. We hypothesized that cerebrovascular myogenic reactivity is rhythmic and explains the circadian variation in SAH-induced injury. Methods: SAH was modeled in mice with prechiasmatic blood injection. Inducible, smooth muscle cell–specific Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1) gene deletion (smooth muscle–specific Bmal1 1 knockout [sm-Bmal1 KO]) disrupted circadian rhythms within the cerebral microcirculation. Olfactory cerebral resistance arteries were functionally assessed by pressure myography in vitro; these functional assessments were related to polymerase chain reaction/Western blot data, brain histology (Fluoro-Jade/activated caspase-3), and neurobehavioral assessments (modified Garcia scores). Results: Cerebrovascular myogenic vasoconstriction is rhythmic, with a peak and trough at Zeitgeber times 23 and 11 (ZT23 and ZT11), respectively. Histological and neurobehavioral assessments demonstrate that higher injury levels occur when SAH is induced at ZT23, compared with ZT11. In sm-Bmal1 KO mice, myogenic reactivity is not rhythmic. Interestingly, myogenic tone is higher at ZT11 versus ZT23 in sm-Bmal1 KO mice; accordingly, SAH-induced injury in sm-Bmal1 KO mice is more severe when SAH is induced at ZT11 compared to ZT23. We examined several myogenic signaling components and found that CFTR (cystic fibrosis transmembrane conductance regulator) expression is rhythmic in cerebral arteries. Pharmacologically stabilizing CFTR expression in vivo (3 mg/kg lumacaftor for 2 days) eliminates the rhythmicity in myogenic reactivity and abolishes the circadian variation in SAH-induced neurological injury. Conclusions: Cerebrovascular myogenic reactivity is rhythmic. The level of myogenic tone at the time of SAH ictus is a key factor influencing the extent of injury. Circadian oscillations in cerebrovascular CFTR expression appear to underlie the cerebrovascular myogenic reactivity rhythm.


2018 ◽  
Author(s):  
Yizhi Wang ◽  
Nicole V. DelRosso ◽  
Trisha Vaidyanathan ◽  
Michael Reitman ◽  
Michelle K. Cahill ◽  
...  

AbstractRecent work examining astrocytic physiology centers on fluorescence imaging approaches, due to development of sensitive fluorescent indicators and observation of spatiotemporally complex calcium and glutamate activity. However, the field remains hindered in fully characterizing these dynamics, both within single cells and at the population-level, because of the insufficiency of current region-of-interest-based approaches to describe activity that is often spatially unfixed, size-varying, and propagative. Here, we present a paradigm-shifting analytical framework that releases astrocyte biologists from ROI-based tools. Astrocyte Quantitative Analysis (AQuA) software enables users to take an event-based approach to accurately capture and quantify the irregular activity observed in astrocyte imaging datasets. We apply AQuA to a range of ex vivo and in vivo imaging data, and uncover previously undescribed physiological phenomena in each. Since AQuA is data-driven and based on machine learning principles, it can be applied across model organisms, fluorescent indicators, experimental modes, and imaging resolutions and speeds, enabling researchers to elucidate fundamental astrocyte physiology.


1991 ◽  
Vol 100 (2) ◽  
pp. 365-369 ◽  
Author(s):  
J. Tong ◽  
I.A. Carre ◽  
L.N. Edmunds

Key factors in the adenosine 3′,5′-cyclic monophosphate (cyclic AMP) metabolic pathway are two enzymes responsible for its generation and degradation, namely, adenylate cyclase (AC) and phosphodiesterase (PDE). In LD: 12,12 (12 h light, 12 h dark), these enzymes were found to undergo bimodal, circadian variation of activity in both dividing and nondividing cultures of the photosynthesis-deficient, achlorophyllous ZC mutant of Euglena gracilis Klebs (Z). Maximal AC activity occurred 2 h after the onset of the light interval (CT 02) and at the beginning of darkness (CT 12–14); these times corresponded to the acrophase profile for the rhythmic changes in cyclic AMP content that have been previously reported. The activity of PDE also exhibited a daily oscillation, but with an inverse phase pattern. Both the AC and PDE activity rhythms persisted after the cultures were transferred from LD: 12,12 to constant darkness. The activity of AC was activated significantly in vivo by forskolin at the trough phase (CT 20), while that of PDE was inhibited by 3-isobutyl-1-methyl-xanthine (IBMX) at its peak phase. These results indicate that the rhythms of both AC and PDE may be the main factors generating the circadian oscillations of cyclic AMP content in Euglena, which appear to be under control of an endogenous pacemaker.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e64333 ◽  
Author(s):  
Nana N. Takasu ◽  
Julie S. Pendergast ◽  
Cathya S. Olivas ◽  
Shin Yamazaki ◽  
Wataru Nakamura

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A556-A556
Author(s):  
Brooke M Devries ◽  
Joseph Breuer ◽  
Alexandra Yaw ◽  
Brooke Jackson ◽  
Duong Nguyen ◽  
...  

Abstract Light provides the primary timing signal that enables fine-tuned behavioral and hormonal entrainment of circadian rhythms to the environment. Light is transmitted from the eye to the brain through the retinohypothalamic tract, where one target is the hypothalamic suprachiasmatic nucleus (SCN), which generates self-sustained circadian rhythms. The vasoactive intestinal polypeptide (VIP) expressing neurons of the SCN relay light information to peripheral cells and tissues through control of hormonal and nervous signals, allowing synchronization of molecular clocks located in individual cells throughout the body. Non-natural light cycles, ie shiftwork, and weakened SCN function through genetic manipulation, disrupt the body’s circadian rhythms, causing deregulated hormone release, metabolic disorders, and negative effects on reproductive systems such as irregular menstrual cycles and decreased sperm count. To further our understanding of how the SCN translates light information into neuroendocrine control of fertility, we conditionally deleted the SCN enriched transcription factor Ventral anterior homeobox 1 (Vax1) in post-developmental VIP neurons, generating Vax1-flox/flox:Vip-Cre+ (cKO) mice. To determine if the SCN timekeeping function was impacted in cKO mice, we single housed males and females with running wheels to examine activity during both 12-hour light/dark cycles and in constant darkness. Wheel-running behavior in constant darkness revealed a shortening of the endogenous free-running period (Tau) of the SCN. Aside from Tau, wheel running behaviors were comparable to controls. Weakened SCN output can negatively impact fertility. While on 12-hour light/dark cycles, we found a modest, but significant change in follicle stimulating hormone and estrogen in cKO females and a reduced sensitivity of GnRH neurons to kisspeptin in males. The changes in hormone release were associated with a slightly lengthened estrous cycle in cKO females and reduced sperm quality in cKO males. To identify the molecular origin of the shortened SCN period, we used immunohistochemistry and RNAscope to examine expression of Vip. We found that diestrus cKO females had a significant reduction in Vip expression at ZT16 and preliminary data suggest a reduction in the circadian clock gene Bmal1. Together, these studies identify a novel role of VAX1 in VIP neurons where VAX1 is required for VIP expression and circadian timekeeping. Loss of VAX1 in VIP neurons weakens SCN output, deregulating reproductive hormone release and modestly reducing reproductive function in both males and females.


Sign in / Sign up

Export Citation Format

Share Document