scholarly journals Genetic insights into smoking behaviours in 10,558 men of African ancestry from continental Africa and the UK

Author(s):  
Noemi-Nicole Piga ◽  
Palwende Romuald Boua ◽  
Chisom Soremekun ◽  
Nick Shrine ◽  
Kayesha Coley ◽  
...  

AbstractSmoking is a leading risk factor for many of the top ten causes of death worldwide. Of the 1 billion smokers globally, 80% live in low- and middle-income countries, where the number of deaths due to tobacco use is expected to double in the next decade according to the World Health Organization. Genetic studies have helped to identify biological pathways for smoking behaviours, but have mostly focussed on individuals of European ancestry or living in either North America or Europe.Here we present a genome-wide association study of two smoking behaviour traits in 10,558 men of African ancestry living in five African countries and the UK. Eight independent variants were associated with either smoking initiation or cessation at p-value < 5 × 10−6. Of these, four were monomorphic or rare in European populations. Gene prioritization strategy highlighted five genes, including SEMA6D, previously described as associated with several smoking behaviour traits. These results confirm the importance of genetic epidemiological studies in underrepresented populations.

2020 ◽  
Author(s):  
Bryan C. Quach ◽  
Michael J. Bray ◽  
Nathan C. Gaddis ◽  
Mengzhen Liu ◽  
Teemu Palviainen ◽  
...  

AbstractCigarette smoking is the leading cause of preventable morbidity and mortality. Knowledge is evolving on genetics underlying initiation, regular smoking, nicotine dependence (ND), and cessation. We performed a genome-wide association study using the Fagerström Test for ND (FTND) in 58,000 smokers of European or African ancestry. Five genome-wide significant loci, including two novel loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416) were identified, and loci reported for other smoking traits were extended to ND. Using the heaviness of smoking index (HSI) in the UK Biobank (N=33,791), rs2714700 was consistently associated, but rs1862416 was not associated, likely reflecting ND features not captured by the HSI. Both variants were cis-eQTLs (rs2714700 for MAGI2-AS3 in hippocampus, rs1862416 for TENM2 in lung), and expression of genes spanning ND-associated variants was enriched in cerebellum. SNP-based heritability of ND was 8.6%, and ND was genetically correlated with 17 other smoking traits (rg=0.40–0.95) and co-morbidities. Our results emphasize the FTND as a composite phenotype that expands genetic knowledge of smoking, including loci specific to ND.


2021 ◽  
Vol 6 ◽  
pp. 20
Author(s):  
Stasa Stankovic ◽  
Felix R. Day ◽  
Yajie Zhao ◽  
Claudia Langenberg ◽  
Nicholas J. Wareham ◽  
...  

Background: Insulin-like growth factor-1 (IGF1) has been implicated in mitogenic and anti-apoptotic mechanisms that promote susceptibility to cancer development and growth. Previous epidemiological studies have described phenotypic associations between higher circulating levels of IGF1 in adults with higher risks for breast, prostate, ovarian, colorectal, melanoma and lung cancers. However, such evidence is prone to confounding and reverse causality. Furthermore, it is unclear whether IGF1 promotes only the survival and proliferation of cancerous cells, or also the malignant transformation of healthy cells. Methods: We perform a genome-wide association study in 428,525 white European ancestry individuals in the UK Biobank study (UKBB) and identify 831 independent genetic determinants of circulating IGF1 levels, double the number previously reported. Results: Collectively these signals explain ~7.5% of the variance in circulating IGF1 levels in EPIC-Norfolk, with individuals in the highest 10% of genetic risk exhibiting ~1 SD higher levels than those in the lowest 10%. Using a Mendelian randomization approach, we demonstrate that genetically higher circulating IGF1 levels are associated with greater likelihood of mosaic loss of chromosome Y in leukocytes in men in UKBB (OR per +1 SD = 1.038 (95% CI: 1.010-1.067), P=0.008) and 23andMe, Inc. (P=6.8×10-05), a biomarker of genomic instability involved in early tumorigenesis. Genetically higher IGF1 is also associated with higher risks for colorectal (OR = 1.126 (1.048-1.210), P=1.3×10-03) and breast cancer (OR= 1.075 (1.048-1.103), P=3.9×10-08), with similar effects on estrogen positive (ER+) (OR = 1.069 (1.037-1.102), P=2.3×10-05) and estrogen negative (ER-) (OR = 1.074 (1.025-1.125), P=3.9×10-08) subtypes. Conclusions: These findings give an insight into the genetic regulation of circulating IGF1 levels and support a causal role for IGF1 in early tumorigenesis and risks for breast and colorectal cancers.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4059-4059
Author(s):  
Erin Peckham ◽  
Philip J Lupo ◽  
Michael E Scheurer ◽  
Rikhia Chakraborty ◽  
John Belmont ◽  
...  

Abstract Introduction: Langerhans cell histiocytosis (LCH) is a disease characterized by inflammatory lesions including pathologic CD207+ dendritic cells. Clinically, LCH is highly variable ranging from single lesions to highly aggressive, disseminated disease involving multiple organs and requiring intensive chemotherapy. Recent data support a model of pathogenesis in which activating somatic mutations in MAPK pathway genes arise in myeloid DC precursors. However, little is known about genetic susceptibility to this condition. Therefore, we conducted a genome-wide association study to characterize the role of inherited genetic variants on disease risk. Methods: We utilized a case-parent trio approach, which is immune to the effects of population stratification bias. Specifically, this allows for the inclusion of individuals regardless of genetic ancestry. LCH case-parent trios (n=134) were recruited from Texas Children's Cancer Center. Genotyping was performed using the Illumina Omni-5 Quad BeadChip. Genetic ancestry was determined using the bioinformatics algorithm STRUCTURE. To inform this algorithm, a set of 12,898 autosomal ancestry informative markers specifically identified to infer population substructure was extracted from the study trios. Estimated genomic ancestral proportions were then used to classify each study participant as either of European ancestry, Amerindian ancestry, or of African ancestry. For the association analysis, we focused on the role of common variants (i.e., minor allele frequency ≥5%). The association analysis was conducted utilizing the PREMIM-EMIM algorithm, an established, multinomial log-likelihood approach for assessing case-parent trios GWAS data. This method allows for the inclusion of "incomplete" trios (e.g., mother-case duos). We applied a genome-wide statistical significance cutoff of p<1.0x10-5. Results: In this GWAS, LCH cases were predominantly male (54%), and based on the genetic ancestry analysis, 60% were of European ancestry, 36% Amerindian ancestry, and 4% African ancestry. Among the 343 individuals included in the analysis, 1,672,105 SNPs autosomal SNPs were assessed and an overview of the results is displayed using a Manhattan plot. We identified five potential inherited genomic regions associated with LCH susceptibility. The strongest associations between inherited SNPs and childhood LCH were seen in SMAD6 on chromosome 15 (p-value = 2.38x10-7) and in ECE1 on chromosome 1 (p-value = 2.15x10-6). Conclusions: In this genome-wide assessment of the role of inherited genetic variation on the risk of LCH, we identified SNPs with significant effects in genes implicated in diverse pathways including embryogenesis and cellular division. Among the proteins encoded by the regions identified, SMAD6and ECE1 have both been reported to impact ERK activation, a critical feature of LCH pathogenesis. These findings support potential for inherited genetic variants to influence risk of developing LCH. Disclosures Allen: NovImmune: Consultancy, Other: unpaid; Roche: Consultancy, Other: unpaid.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Torsten Klengel ◽  
Elizabeth G. Atkinson ◽  
Chia-Yen Chen ◽  
...  

Abstract The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.


2018 ◽  
Vol 27 (15) ◽  
pp. 2762-2772 ◽  
Author(s):  
Jennifer L Aponte ◽  
Mathias N Chiano ◽  
Laura M Yerges-Armstrong ◽  
David A Hinds ◽  
Chao Tian ◽  
...  

Abstract Rosacea is a common, chronic skin disease of variable severity with limited treatment options. The cause of rosacea is unknown, but it is believed to be due to a combination of hereditary and environmental factors. Little is known about the genetics of the disease. We performed a genome-wide association study (GWAS) of rosacea symptom severity with data from 73 265 research participants of European ancestry from the 23andMe customer base. Seven loci had variants associated with rosacea at the genome-wide significance level (P < 5 × 10−8). Further analyses highlighted likely gene regions or effector genes including IRF4 (P = 1.5 × 10−17), a human leukocyte antigen (HLA) region flanked by PSMB9 and HLA-DMB (P = 2.2 × 10−15), HERC2-OCA2 (P = 4.2 × 10−12), SLC45A2 (P = 1.7 × 10−10), IL13 (P = 2.8 × 10−9), a region flanked by NRXN3 and DIO2 (P = 4.1 × 10−9), and a region flanked by OVOL1and SNX32 (P = 1.2 × 10−8). All associations with rosacea were novel except for the HLA locus. Two of these loci (HERC-OCA2 and SLC45A2) and another precedented variant (rs1805007 in melanocortin 1 receptor) with an association P value just below the significance threshold (P = 1.3 × 10−7) have been previously associated with skin phenotypes and pigmentation, two of these loci are linked to immuno-inflammation phenotypes (IL13 and PSMB9-HLA-DMA) and one has been associated with both categories (IRF4). Genes within three loci (PSMB9-HLA-DMA, HERC-OCA2 and NRX3-DIO2) were differentially expressed in a previously published clinical rosacea transcriptomics study that compared lesional to non-lesional samples. The identified loci provide specificity of inflammatory mechanisms in rosacea, and identify potential pathways for therapeutic intervention.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Olusola Olawoye ◽  
Chimdi Chuka-Okosa ◽  
Onoja Akpa ◽  
Tony Realini ◽  
Michael Hauser ◽  
...  

Abstract Background This report describes the design and methodology of the “Eyes of Africa: The Genetics of Blindness,” a collaborative study funded through the Human Heredity and Health in Africa (H3Africa) program of the National Institute of Health. Methods This is a case control study that is collecting a large well phenotyped data set among glaucoma patients and controls for a genome wide association study. (GWAS). Multiplex families segregating Mendelian forms of early-onset glaucoma will also be collected for exome sequencing. Discussion A total of 4500 cases/controls have been recruited into the study at the end of the 3rd funded year of the study. All these participants have been appropriately phenotyped and blood samples have been received from these participants. Recent GWAS of POAG in African individuals demonstrated genome-wide significant association with the APBB2 locus which is an association that is unique to individuals of African ancestry. This study will add to the existing knowledge and understanding of POAG in the African population.


2020 ◽  
Vol 4 (14) ◽  
pp. 3224-3233
Author(s):  
Paul J. Martin ◽  
David M. Levine ◽  
Barry E. Storer ◽  
Sarah C. Nelson ◽  
Xinyuan Dong ◽  
...  

Abstract Many studies have suggested that genetic variants in donors and recipients are associated with survival-related outcomes after allogeneic hematopoietic cell transplantation (HCT), but these results have not been confirmed. Therefore, the utility of testing genetic variants in donors and recipients for risk stratification or understanding mechanisms leading to mortality after HCT has not been established. We tested 122 recipient and donor candidate variants for association with nonrelapse mortality (NRM) and relapse mortality (RM) in a cohort of 2560 HCT recipients of European ancestry with related or unrelated donors. Associations discovered in this cohort were tested for replication in a separate cohort of 1710 HCT recipients. We found that the donor rs1051792 A allele in MICA was associated with a lower risk of NRM. Donor and recipient rs1051792 genotypes were highly correlated, making it statistically impossible to determine whether the donor or recipient genotype accounted for the association. Risks of grade 3 to 4 graft-versus-host disease (GVHD) and NRM in patients with grades 3 to 4 GVHD were lower with donor MICA-129Met but not with MICA-129Val, implicating MICA-129Met in the donor as an explanation for the decreased risk of NRM after HCT. Our analysis of candidate variants did not show any other association with NRM or RM. A genome-wide association study did not identify any other variants associated with NRM or RM.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Stacy C Brown ◽  
Cameron Both ◽  
Julian N Acosta ◽  
Natalia Szejko ◽  
Victor Torres ◽  
...  

Background: Several genetic susceptibility risk loci for ischemic stroke have been identified. However, the relative dearth of genetic data from populations of non-European ancestry has the potential to create disparities in access to genomics-based precision medicine strategies. Individuals of Native Hawaiian ancestry represent a particularly understudied group in stroke genomics research despite facing high rates of cerebrovascular disease. Hypothesis: Genetic variants associated with stroke differ between Native Hawaiians and previously studied groups of predominantly European ancestry. Methods: We conducted a genome-wide (GW) association study of stroke and myocardial infarction (MI) in an adult population of Native Hawaiian ancestry, using data from the Multiethnic Cohort study (MEC). Genetic information was ascertained via genome-wide array genotyping using the AB OpenArray and TaqMan platforms followed by imputation to 1000 Genomes reference panels. We pursued replication of variants that were GW significant (p<5x10 -8 ) or yielded suggestive associations (p<5x10 -7 ) in the prior stroke GW association study MEGASTROKE. Results: We identified 2,104 individuals (1,089 [51.8%] female) of Native Hawaiian ancestry, including 173 cases and 1,931 controls. We identified one novel susceptibility risk locus at a narrow intronic region located at chromosome q26.2 (top associated SNP 3:169096251, OR 2.48, 95%CI 1.81-3.41; p=1.93x10 -8 ), overlying the MECOM gene. We also identified 9 other suggestive risk loci at p<5x10 -7 . When replicating in MEGASTROKE, q26.2 did not have available counterpart variants to analyze, and 3 out of 9 suggestive signals were associated with ischemic stroke subtypes at p<0.05. Conclusions: We report the first GW association study of ischemic stroke and myocardial infarction in a Native Hawaiian population. We identified one susceptibility risk locus at q26.2, located in a narrow intronic region of MECOM, a gene that codes for a histone-lysine N-methyltransferase that has transcriptional regulation and oncoprotein functions. The lack of available replication data for this locus in the large MEGASTROKE collaboration emphasizes the importance of developing genomic resources across ancestral groups.


Author(s):  
Wan-Yu Lin

Abstract Background Biological age (BA) can be estimated by phenotypes and is useful for predicting lifespan and healthspan. Levine et al. proposed a PhenoAge and a BioAge to measure BA. Although there have been studies investigating the genetic predisposition to BA acceleration in Europeans, little has been known regarding this topic in Asians. Methods I here estimated PhenoAgeAccel (age-adjusted PhenoAge) and BioAgeAccel (age-adjusted BioAge) of 94,443 Taiwan Biobank (TWB) participants, wherein 25,460 TWB1 subjects formed a discovery cohort and 68,983 TWB2 individuals constructed a replication cohort. Lifestyle factors and genetic variants associated with PhenoAgeAccel and BioAgeAccel were investigated through regression analysis and a genome-wide association study (GWAS). Results A unit (kg/m 2) increase of BMI was associated with a 0.177-year PhenoAgeAccel (95% C.I. = 0.163~0.191, p = 6.0×) and 0.171-year BioAgeAccel (95% C.I. = 0.165~0.177, p = 0). Smokers on average had a 1.134-year PhenoAgeAccel (95% C.I. = 0.966~1.303, p = 1.3×) compared with non-smokers. Drinkers on average had a 0.640-year PhenoAgeAccel (95% C.I. = 0.433~0.847, p = 1.3×) and 0.193-year BioAgeAccel (95% C.I. = 0.107~0.279, p = 1.1×) relative to non-drinkers. A total of 11 and 4 single-nucleotide polymorphisms (SNPs) were associated with PhenoAgeAccel and BioAgeAccel (p&lt;5× in both TWB1 and TWB2), respectively. Conclusions A PhenoAgeAccel-associated SNP (rs1260326 in GCKR) and two BioAgeAccel-associated SNPs (rs7412 in APOE; rs16998073 near FGF5) were consistent with the finding from the UK Biobank. The lifestyle analysis shows that prevention from obesity, cigarette smoking, and alcohol consumption is associated with a slower rate of biological aging.


2019 ◽  
Vol 116 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Katra Hadji-Turdeghal ◽  
Laura Andreasen ◽  
Christian M Hagen ◽  
Gustav Ahlberg ◽  
Jonas Ghouse ◽  
...  

Abstract Aims Syncope is a common condition associated with frequent hospitalization or visits to the emergency department. Family aggregation and twin studies have shown that syncope has a heritable component. We investigated whether common genetic variants predispose to syncope and collapse. Methods and results We used genome-wide association data on syncope on 408 961 individuals with European ancestry from the UK Biobank study. In a replication study, we used the Integrative Psychiatric Research Consortium (iPSYCH) cohort (n = 86 189), to investigate the risk of incident syncope stratified by genotype carrier status. We report on a genome-wide significant locus located on chromosome 2q32.1 [odds ratio = 1.13, 95% confidence interval (CI) 1.10–1.17, P = 5.8 × 10−15], with lead single nucleotide polymorphism rs12465214 in proximity to the gene zinc finger protein 804a (ZNF804A). This association was also shown in the iPSYCH cohort, where homozygous carriers of the C allele conferred an increased hazard ratio (1.30, 95% CI 1.15–1.46, P = 1.68 × 10−5) of incident syncope. Quantitative polymerase chain reaction analysis showed ZNF804A to be expressed most abundantly in brain tissue. Conclusion We identified a genome-wide significant locus (rs12465214) associated with syncope and collapse. The association was replicated in an independent cohort. This is the first genome-wide association study to associate a locus with syncope and collapse.


Sign in / Sign up

Export Citation Format

Share Document