scholarly journals Divalent metal ions boost effect of nucleic acids delivered by cell-penetrating peptides

2021 ◽  
Author(s):  
Maria Maloverjan ◽  
Kart Padari ◽  
Aare Abroi ◽  
Ana Rebane ◽  
Margus Pooga

Cell-penetrating peptides (CPPs) are promising tools for transfection of various substances, including nucleic acids, into cells. The aim of current work was to search for novel safe and effective approaches for enhancing transfection efficiency of nanoparticles formed of CPP and splice-correcting oligonucleotide (SCO) without increasing the concentration of peptide. We analyzed an effect of inclusion of calcium and magnesium ions into nanoparticles on CPP-mediated transfection in cell culture. We also studied the mechanism of such transfection as well as its efficiency, applicability in case of different cell lines, nucleic acid types and peptides, and possible limitations. We discovered a strong positive effect of these ions on transfection efficiency of SCO, that translated to enhanced synthesis of functional reporter protein. We observed significant changes in intracellular distribution and trafficking of nanoparticles formed with addition of the ions, without increasing cytotoxicity. We propose a novel strategy of preparing CPP-oligonucleotide nanoparticles with enhanced efficiency and, thus, higher therapeutic potential. Our discovery may be translated to primary cell cultures and, possibly, in vivo studies, in the aim to increase CPP-mediated transfection efficiency and likelihood of using CPPs in clinics.

2021 ◽  
Vol 14 (7) ◽  
pp. 667
Author(s):  
Annely Lorents ◽  
Maria Maloverjan ◽  
Kärt Padari ◽  
Margus Pooga

Nucleic acid molecules can be transferred into cells to alter gene expression and, thus, alleviate certain pathological conditions. Cell-penetrating peptides (CPPs) are vectors that can be used for transfecting nucleic acids as well as many other compounds. CPPs associate nucleic acids non-covalently, forming stable nanoparticles and providing efficient transfection of cells in vitro. However, in vivo, expected efficiency is achieved only in rare cases. One of the reasons for this discrepancy is the formation of protein corona around nanoparticles, once they are exposed to a biological environment, e.g., blood stream. In this study, we compared protein corona of CPP-nucleic acid nanoparticles formed in the presence of bovine, murine and human serum. We used Western blot and mass-spectrometry to identify the major constituents of protein corona forming around nanoparticles, showing that proteins involved in transport, haemostasis and complement system are its major components. We investigated physical features of nanoparticles and measured their biological efficiency in splice-correction assay. We showed that protein corona constituents might alter the fate of nanoparticles in vivo, e.g., by subjecting them to phagocytosis. We demonstrated that composition of protein corona of nanoparticles is species-specific that leads to dissimilar transfection efficiency and should be considered while developing delivery systems for nucleic acids.


2021 ◽  
Author(s):  
Annely Lorents ◽  
Maria Maloverjan ◽  
Kärt Padari ◽  
Margus Pooga

Nucleic acid molecules can be transferred into cells to alter gene expression and, thus, alleviate certain pathological conditions. Cell-penetrating peptides (CPPs) are vectors that can be used for transfecting nucleic acids as well as many other compounds. CPPs associate nucleic acids non-covalently, forming stable nanoparticles and providing efficient transfection of cells in vitro. However, in vivo, expected efficiency is achieved only in rare cases. One of the reasons for this discrepancy is formation of protein corona around nanoparticles, once they are exposed to a biological environment, e.g. blood stream. In this study, we compared CPP-nucleic acid nanoparticles formed in the presence of bovine, murine and human serum. We used Western blot and mass-spectrometry to identify the major constituents of protein corona forming around nanoparticles, showing that proteins involved in transport, haemostasis and complement system are its major components. We investigated physical features of nanoparticles, and measured their biological efficiency in splice-correction assay. We showed that protein corona constituents might alter the fate of nanoparticles in vivo, e.g. by subjecting them to phagocytosis. We demonstrated that composition of protein corona of nanoparticles is species-specific that leads to dissimilar transfection efficiency and should be taken into account while developing delivery systems for nucleic acids.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Yue-Wern Huang ◽  
Han-Jung Lee ◽  
Larry M. Tolliver ◽  
Robert S. Aronstam

Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature of versatile CPPs and their interactions with various types of cargoes. We then discussin vivoandin vitrodelivery of nucleic acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed.


Nanomedicine ◽  
2019 ◽  
Vol 14 (23) ◽  
pp. 3089-3104 ◽  
Author(s):  
Roberto Gonzalez-Pizarro ◽  
Graziella Parrotta ◽  
Rodrigo Vera ◽  
Elena Sánchez-López ◽  
Ruth Galindo ◽  
...  

Aim: Development of fluorometholone-loaded PEG-PLGA nanoparticles (NPs) functionalized with cell-penetrating peptides (CPPs) for the treatment of ocular inflammatory disorders. Materials & methods: Synthesized polymers and peptides were used for elaboration of functionalized NPs, which were characterized physicochemically. Cytotoxicity and ability to modulate the expression of proinflammatory cytokines were evaluated in vitro using human corneal epithelial cells (HCE-2). NPs uptake was assayed in both in vitro and in vivo models. Results: NPs showed physicochemical characteristics suitable for ocular administration without evidence of cytotoxicity. TAT-NPs and G2-NPs were internalized and displayed anti-inflammatory activity in both HCE-2 cells and mouse eye. Conclusion: TAT-NPs and G2-NPs could be considered a novel strategy for the treatment of ocular inflammatory diseases of the anterior and posterior segment.


2005 ◽  
Vol 38 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Peter E. Nielsen

1. Introduction 3452. Peptide nucleic acid (PNA) 3463. ‘Cell penetrating peptides’ (CPPs) 3464. Endosomal escape 3475. Cellular delivery of PNA 3476.In vivobioavailability of PNA 3497. References 350Recent results on the cellular delivery of antisense peptide nucleic acids (PNA) via peptide conjugation is briefly discussed, in particular in the context of endosomal entrapment and escape.


2008 ◽  
Vol 86 (1-2) ◽  
pp. 1-7 ◽  
Author(s):  
Margaret W. Kinyanjui ◽  
Elizabeth D. Fixman

Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are peptides that have the ability to efficiently traverse cellular membranes, either alone or in association with molecular cargo. Several naturally occurring PTDs, including those from HIV TAT and Drosophila antennapedia, have this unique activity. Synthetic CPPs, such as polyarginine, also have the ability to enter cells and transport a variety of cargo. While the precise mechanism(s) of cellular entry for individual CPPs may vary, it is likely that uptake is mediated, at least in part, through endocytosis. Moreover, biological activity of cell-penetrating peptides and proteins has been clearly demonstrated in a number of in vitro and in vivo studies. Recently, cell-penetrating proteins targeting the Ras GTPase and the phospholipid kinase PI3K (phosphoinositide 3-kinase) have been shown to inhibit eosinophil trafficking and survival in vitro. These proteins, as well as CPPs targeting the STAT-6 transcription factor or the T-cell costimulatory molecule CTLA-4 (cytotoxic T lymphocyte-associated antigen-4), have also been tested in animal models of asthma. Data from several groups, including ours, indicate that these molecules inhibit airway eosinophilic inflammation, airway hyperresponsiveness (AHR), and mucus production in experimental allergic airways disease. Thus, CPPs targeting these and other signaling molecules may also effectively inhibit allergic airways disease in humans.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Sign in / Sign up

Export Citation Format

Share Document