Macroevolutionary dynamics of climatic niche space

2021 ◽  
Author(s):  
Ignacio Quintero ◽  
Marc A. Suchard ◽  
Walter Jetz

How and why lineages evolve along niche space as they diversify and adapt to different environments is fundamental to evolution. Progress has been hampered by the difficulties of linking a comprehensive empirical characterization of species niches with flexible evolutionary models that describe their evolution. Consequently, the relative influence of external episodic and biotic factors remains poorly understood. Here we characterize species' two-dimensional temperature and precipitation niche space occupied (i.e., species niche envelope) as complex geometries and assess their evolution across a large vertebrate radiation (all Aves) using a model that captures heterogeneous evolutionary rates on time-calibrated phylogenies. We find that extant birds coevolved from warm, mesic climatic niches into colder and drier environments and responded to the K-Pg boundary with a dramatic increase in disparity. Contrary to expectations of subsiding rates of niche evolution as lineages diversify, our results show that overall rates have increased steadily, with some lineages experiencing exceptionally high evolutionary rates, associated with colonization of novel niche spaces, and others showing niche stasis. Both competition- and environmental change-driven niche evolution transpire and result in highly heterogeneous rates near the present. Our findings share the limitations of all work based purely on extant taxa but highlight the growing ecological and conservation insights arising from the model-based integration of increasingly comprehensive and robust environmental and phylogenetic information.

2014 ◽  
Vol 32 (10) ◽  
pp. 1144
Author(s):  
Ting TONG ◽  
Wanfeng ZHANG ◽  
Donghao LI ◽  
Jinhua ZHAO ◽  
Zhenyang CHANG ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jin Yeong Song ◽  
Hyun Il Ryu ◽  
Jeong Myeong Lee ◽  
Seong Hwan Bae ◽  
Jae Woo Lee ◽  
...  

AbstractElectrospinning is a common and versatile process to produce nanofibers and deposit them on a collector as a two-dimensional nanofiber mat or a three-dimensional (3D) macroscopic arrangement. However, 3D electroconductive collectors with complex geometries, including protruded, curved, and recessed regions, generally caused hampering of a conformal deposition and incomplete covering of electrospun nanofibers. In this study, we suggested a conformal fabrication of an electrospun nanofiber mat on a 3D ear cartilage-shaped hydrogel collector based on hydrogel-assisted electrospinning. To relieve the influence of the complex geometries, we flattened the protruded parts of the 3D ear cartilage-shaped hydrogel collector by exploiting the flexibility of the hydrogel. We found that the suggested fabrication technique could significantly decrease an unevenly focused electric field, caused by the complex geometries of the 3D collector, by alleviating the standard deviation by more than 70% through numerical simulation. Furthermore, it was experimentally confirmed that an electrospun nanofiber mat conformally covered the flattened hydrogel collector with a uniform thickness, which was not achieved with the original hydrogel collector. Given that this study established the conformal electrospinning technique on 3D electroconductive collectors, it will contribute to various studies related to electrospinning, including tissue engineering, drug/cell delivery, environmental filter, and clothing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prashanth Gopalan ◽  
Yunshan Wang ◽  
Berardi Sensale-Rodriguez

AbstractWhile terahertz spectroscopy can provide valuable information regarding the charge transport properties in semiconductors, its application for the characterization of low-conductive two-dimensional layers, i.e., σs <  < 1 mS, remains elusive. This is primarily due to the low sensitivity of direct transmission measurements to such small sheet conductivity levels. In this work, we discuss harnessing the extraordinary optical transmission through gratings consisting of metallic stripes to characterize such low-conductive two-dimensional layers. We analyze the geometric tradeoffs in these structures and provide physical insights, ultimately leading to general design guidelines for experiments enabling non-contact, non-destructive, highly sensitive characterization of such layers.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xianghui Zhang ◽  
Andre Beyer

The discovery of graphene has triggered a great interest in inorganic as well as molecular two-dimensional (2D) materials. In this review, we summarize recent progress in the mechanical characterization of...


Sign in / Sign up

Export Citation Format

Share Document