Capacitive Two-dimensional Force Sensing Microcantilever with a Conductive Tip for Characterization of Biological Samples

Author(s):  
Kihan Park ◽  
Jaydev P. Desai
2014 ◽  
Vol 32 (10) ◽  
pp. 1144
Author(s):  
Ting TONG ◽  
Wanfeng ZHANG ◽  
Donghao LI ◽  
Jinhua ZHAO ◽  
Zhenyang CHANG ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prashanth Gopalan ◽  
Yunshan Wang ◽  
Berardi Sensale-Rodriguez

AbstractWhile terahertz spectroscopy can provide valuable information regarding the charge transport properties in semiconductors, its application for the characterization of low-conductive two-dimensional layers, i.e., σs <  < 1 mS, remains elusive. This is primarily due to the low sensitivity of direct transmission measurements to such small sheet conductivity levels. In this work, we discuss harnessing the extraordinary optical transmission through gratings consisting of metallic stripes to characterize such low-conductive two-dimensional layers. We analyze the geometric tradeoffs in these structures and provide physical insights, ultimately leading to general design guidelines for experiments enabling non-contact, non-destructive, highly sensitive characterization of such layers.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 33
Author(s):  
Xavier Garcia ◽  
Maria del Mar Sabaté ◽  
Jorge Aubets ◽  
Josep Maria Jansat ◽  
Sonia Sentellas

This paper aims to cover the main strategies based on ion mobility spectrometry (IMS) for the analysis of biological samples. The determination of endogenous and exogenous compounds in such samples is important for the understanding of the health status of individuals. For this reason, the development of new approaches that can be complementary to the ones already established (mainly based on liquid chromatography coupled to mass spectrometry) is welcomed. In this regard, ion mobility spectrometry has appeared in the analytical scenario as a powerful technique for the separation and characterization of compounds based on their mobility. IMS has been used in several areas taking advantage of its orthogonality with other analytical separation techniques, such as liquid chromatography, gas chromatography, capillary electrophoresis, or supercritical fluid chromatography. Bioanalysis is not one of the areas where IMS has been more extensively applied. However, over the last years, the interest in using this approach for the analysis of biological samples has clearly increased. This paper introduces the reader to the principles controlling the separation in IMS and reviews recent applications using this technique in the field of bioanalysis.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xianghui Zhang ◽  
Andre Beyer

The discovery of graphene has triggered a great interest in inorganic as well as molecular two-dimensional (2D) materials. In this review, we summarize recent progress in the mechanical characterization of...


Sign in / Sign up

Export Citation Format

Share Document